Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Зависимость положения полос ППР пластинок – мод дипольного (ППР-I) и квадрупольных (ППР-II, ППР-III) резонансов – от объемной доли затравочного раствора. На вставке – фотография, демонстрирующая цвет золей НЧС, полученных с использованием различной доли затравочного раствора (а). ПЭМ-изображение типичного образца (объемная доля затравок – 19% (б).
РЭМ-изображение агрегатов НЧС на поверхности эритроцита.
Суспензия эритроцитов в буфере Алена, нанесенная на предметное стекло (слева) и на наноструктурированные покрытия с отдельными серебряными кольцами. Карты (средний ряд изображений) визуализируют положение эритроцитов на каждом из типов подложек, соответственно, с течением времени: 10 (красные точки), 15 (зеленые), 20 (синие) и 25 мин (фиолетовые). На диаграмме со статистическими данными цвет столбцов соответствует цветам на картам, белым цветом обозначены коэффициенты вариации (CV) количества клеток. Внизу справа показана модель эритроцита, расположенного на наноструктурированной серебряной стенке кольца. На вставке показано увеличенное изображение примембранной структуры эритроцита, иллюстрирующее расположение серебряных стенок в непосредственной близости к примембранному гемоглобину.
РЭМ- (а, б, в) и ПЭМВР-изображения (г, д) иехархической структуры наноструктурированных покрытий на основе серебра, полученных методом аэрозольного осаждения. На вставке (г) – электронная дифракция НЧС. ПЭМВР-изображение области между НЧС в пористой матрице (д). Стрелками обозначены НЧС (г, д).
Типичные КР- и ГКР-спектры эритроцитов, теней эритроцитов и изолированного гемоглобина (Гб). Для регистрации спектров КР в качестве подложек использовали предметное стекло, ГКР – наноструктурированные покрытия на основе серебра. Цветом обозначены характеристические колебания различных связей порфиринового комплекса железа (лазер 514 нм).
Обложка журнала.

Вижу кровь насквозь!

Ключевые слова:  ГКР, наноматериалы, серебро, эритроциты

Опубликовал(а):  Гудилин Евгений Алексеевич

22 октября 2012

О серебре и, особенно, «наносеребре» не писал только ленивый. И деньги из серебра делали, и «святую воду» держали в серебряных кувшинах, и плесень с бактериями травили наночастицами... Пожалуй, эти факты стали уже почти что классическими... И даже, как мы писали, кровь мексиканских мышей - вампиров не подвергается лизису на наноструктурированных серебряных подложках. Правда, указанное сообщение было датировано 1 апреля, и не случайно... Однако, в каждой шутке есть доля шутки и серебро, правда, может помочь разобраться с кровью. Но не в отношении борьбы с мифическими вампирами, а, уже без шуток, с самой прагматической целью – для создания будущей высокочувствительной биомедицинской диагностики на живых клетках, без их разрушения, возможно, даже на единичных клетках. И это, вероятно, самая интересная и удивительная область применения серебра, требующая именно наночастиц или наноструктур с плазмонным резонансом.

В последнее время разработка новых способов синтеза наночастиц для важнейших биомедицинских приложений, таких как диагностика, визуализация, терапия и доставка лекарств действительно является одним из перспективных направлений современных исследований. Из всех возможных и вполне естественных применений наночастиц и наноструктур на основе серебра самой востребованной является спектроскопия гигантского комбинационного рассеяния (ГКР). В последние два года количество статей в этом направлении нарастает просто лавинообразно и ГКР начинает рассматриваться как универсальный метод анализа биологических молекул. К основным преимуществам метода относят высокую чувствительность, качественное определение молекул по характеристическим спектрам, простоту пробоподготовки, уникальную возможность усиления сигнала комбинационного рассеяния (КР) до 10^14 раз. Одной из последних тенденций является анализ живых клеток с помощью ГКР-спектроскопии. В этом случае возникает ряд существенных и пока еще не вполне решенных проблем, связанных с поиском эффективных, неинвазивных и воспроизводимых методов исследования, обладающих высокой селективностью и информативностью. В основе метода ГКР лежит эффект плазмонного резонанса, которым обладают наночастицы (НЧ) металлов (например, Ag, Au, Pt) и наноструктурированные материалы на основе ряда металлов, поэтому ключевыми в данной проблеме являются материаловедческие аспекты, то есть, собственно, создание новых ГКР-активных наноматериалов для исследования биомолекул в составе живых клеток.

Серебро является самым востребованным металлом для плазмоники и метода ГКР, поскольку оно имеет большую интенсивность полосы поверхностного плазмонного резонанса (ППР) и обладает высоким коэффициентом экстинкции в максимуме этой полосы. Положение полосы ППР наночастиц серебра можно варьировать в широких пределах от видимой до ближней инфракрасной области путем изменения морфологии и размера частиц, создания их агрегатов и более сложных наноструктур. Контролируемое изменение параметров позволяет «настраивать» НЧ для конкретных задач практического применения, поэтому, с точки зрения химии, ключевую роль играет разработка новых методов синтеза НЧС и наноструктур на их основе с заданными геометрическими параметрами, агрегатной структурой и, соответственно, требуемыми оптическими свойствами.

В последней работе аспирантов и сотрудников Московского Университета, опубликованной в J. Mater. Chem. были получены золи наночастиц серебра, не содержащие органических молекул, поверхностно-активных веществ и стабилизаторов. В предложенном методе используются хорошо известные особенности химии серебра. Образование НЧС может быть описано протеканием следующих реакций: 1) осаждение оксида серебра (I): 2AgNO3 + 2NaOH = Ag2O + 2NaNO3 + H2O, 2) получение аммиачного комплекса: Ag2O + 4NH3 + H2O = 2[Ag(NH3)2]OH, 3) разложение комплекса при нагревании: [Ag(NH3)2]OH ↔ Ag+ + 2NH3 + OH-, 3Ag+ + NH3 + 3OH- =3Ag + ½ N2 + 3H2O. Для создания ГКР-активных материалов был предложен метод разложения [Ag(NH3)2]OH непосредственно на подложках, нагретых до 200 – 270оС с использованием аэрозольного осаждения. Микроструктура наноструктрированных пленок характеризуется наличием типичных элементов в форме пересекающихся концентрических колец, состоящих из металлического серебра. Сложная морфология наноструктурированных пленок серебра обусловлена описанным в литературе эффектом «кофейных колец», который заключается в том, что при высыхании капли частицы располагаются не равномерно по поверхности твердого тела, а концентрируются у границ. В процессе высыхания капиллярный поток, направленный от центра капли к ее границам, переносит взвешенные частицы к краю капли. В ходе испарения концентрация частиц вдоль исходной границы капли растет. Как только образовавшиеся наночастицы перемещаются к границе капли, они формируют неплотно упакованные квазисимметричные структуры вблизи границы кольца. В результате образуется пленка из пересекающихся серебряных колец.

Согласно данным ПЭМ и электронной дифракции, условия получения, такие как температура и время аэрозольного осаждения, играют важную роль в процессе образования наноструктур. При низких температурах (60 оС) образуются кольца, состоящие из не полностью разложившегося Ag2O. Микроструктура таких образцов характеризуется наличием стенок, состоящих из Ag2O и имеющих пористую структуру с относительно небольшим количеством НЧС размером 3 – 30 нм. Электронная дифракция демонстрирует наличие, по крайней мере, двух фаз, включая металлическое серебро и оксид серебра (I). При высоких температурах (270 оС) формируется матрица в виде пористой серебряной структуры («серебряная губка») с включенными в нее «кунжутными зернами».

Такие подложки в течение всего времени съемки спектра с использованием малоинтенсивного лазерного излучения, не повреждающего клетки, сохраняют количество клеток постоянным, то есть с ними не взаимодейстуют убийственно. Кроме того, шероховатые наноструктурированные подложки позволяют иммобилизовать эритроциты, в то время как гладкие стеклянные подложки без нанесенного серебра не могут предотвратить случайных перемещений красных кровяных телец, обусловленных броуновским движением. Эти наблюдения позволяют утверждать, что сигнал ГКР от эритроцитов в случае использования наноструктурированных подложек регистрируется от гемоглобина, находящегося внутри клеток, т.к. число клеток остается постоянным в течение эксперимента и на подложках не происходит разрушения клеток с высвобождением гемоглобина. Иными словами, между наноструктурами серебра и молекулами гемоглобина не возникает прямого контакта: они находятся на расстоянии, равном толщине мембраны (порядка 10 нм). Лазерное излучение с оптимально подобранной мощностью (~0.2 мВт) позволяет сохранить эритроциты в живом состоянии. Если условия получения подложек были фиксированы, то наблюдается хорошая воспроизводимость спектров (~85%). ГКР-исследования изолированного гемоглобина и теней (оболочек) эритроцитов в присутствии наноструктурированных покрытий на основе металлического серебра показали, что ГКР-спектры отвечают колебаниям мембрано – связанного гемоглобина (с внутренней стороны мембраны живого эритроцита).

В случае биомолекул, расположенных внутри клеток, физического контакта между НЧ и аналитом не происходит, в связи с чем доминирующее влияние на механизм усиления КР-сигнала оказывает увеличение локального электромагнитного поля на наноструктурах серебра. Поверхность плазматической мембраны эритроцитов не содержит каких-либо микроворсинок и не покрыта толстым слоем гликокаликса, таким образом, наноструктурные элементы подложки напрямую соприкасаются с плазматической мембраной. И именно полученная “странная” иерархическая структура “кольчужных” пленок серебра является, скорее всего, первопричиной успеха, впервые достигнутого смешанным молодежным коллективом химиков, материаловедов и биологов МГУ.

Дополнительные ссылки:

Работа выполнена при поддержке Программы Развития МГУ им. М.В.Ломоносова.





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

K2
K2

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.