Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Флэш - память и RAM: взгляд изнутри

Ключевые слова:  запись информации, периодика, тьютору

Автор(ы): Смирнов Евгений Алексеевич

Опубликовал(а):  Гудилин Евгений Алексеевич

31 декабря 2011

Оригинал статьи опубликован НА ХАБРАХАБРЕ, автор - Е.А.Смирнов (ФНМ МГУ), использовано оборудование отделения ФНМ МГУ Центра коллективного пользования МГУ. Предыдущие статьи аналогичной тематики: 1, 2, 3, 4. "Распилены" USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung

Теоретическая часть

На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

Тут можно подробнее ознакомиться с ниже приведённой схемой и сравнением характеристик различных типов «твердотельной памяти» (или тут)…


Современные типы «твердотельной памяти». Источник

Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах.

Что такое flash-память и какой она бывает (NOR и NAND)?

Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно подробная статья о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память (тут тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


Схематическое представление транзистора с плавающим затвором. Источник

Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано тут. Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

NB: «практически» — ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

Там же, на ixbt, есть ещё одна статья, которая посвящена возможности записи на один транзистор с плавающим затвором нескольких бит информации, что существенно увеличивает плотность записи.

В случае рассматриваемой нами флешки память будет, естественно, NAND и, скорее всего, multi-level cell (MLC).

Если интересно продолжить знакомиться с технологиями Flash-памяти, то тут представлен взгляд из 2004 года на данную проблематику. А здесь (1, 2, 3) некоторые лабораторные решения для памяти нового поколения.

Что такое DRAM?

Что такое DRAM, обсуждается здесь. Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


Устройство ячейки RAM. Источник

Опять-таки на ixbt есть неплохая статья, посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

Единственный вопрос, который мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да, но всё-таки…

Часть практическая

Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти. Источник

Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы тут). За время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


Корпус кварцевого генератора

Случайно, между делом, нашлось-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


Армирующее волокно внутри текстолита и полимерные шарики (указаны стрелочками), из которых и состоит основная масса текстолита

А вот и первая важная деталь флешки – контроллер:


Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

Итак, Вашему вниманию - техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


Техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:


СЭМ-изображения контактов, питающих чип памяти

Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности линиями отмечена отдельная ячейка):


Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Выше - либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.

Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:


Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:


Другие структуры внутри чипов NAND памяти

Всю плату SO-DIMM от Samsung, конечно же, не имело смысла распиливать, лишь с помощью строительного фена был «отсоединен» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.

Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:


«Скол» BGA-пайки

Удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.

Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:


DRAM память во всей красе

Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то тут можно посмотреть более «профессиональное» фото (правда без масштабной метки).

Единственный момент, который смущает, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся под вопросом.

Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых можно только догадываться:


Другие структуры внутри чипа DRAM-памяти

Послесловие
Помимо тех ссылок, что раскиданы по тексту, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора, которая фактически занимается реверс-инжинирингом. К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей.


В статье использованы материалы: Оигинал статьи на Хабре


Средний балл: 10.0 (голосов 6)

 


Комментарии
Палии Наталия Алексеевна, 02 января 2012 18:57 
Палии Наталия Алексеевна, 13 января 2012 19:35 
Вопрос автору - а таким образом можно восстановить данные на флешке
Что может сломаться в флешке, если при включении в компьютер пишется, что даное устройство не опознано.
Munasypov Vsevolod Ed, 02 марта 2012 22:10 
Драйвера обновите
А правда ли, что не безопасное извлечение flash карты влечет за собой сбои в системе компьютера, либо флеки?
Полтарак Павел Андреевич, 13 апреля 2012 15:02 
Может "слететь" файловая система на флешке, данные с неё только в сервис-центре можно будет восстановить. Если содержимое не интересует, то просто форматируем флешку. С компом ничего не будет.
Более, чем доходчиво. Спасибо.

http://enbubu.com

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Жеребенок
Жеребенок

Рейтинг МГУ
По сообщению пресс - службы МГУ, в международном образовательным рейтинге Quacquarelli Symonds (QS) Московский государственный университет имени М.В.Ломоносова укрепил лидирующие позиции, поднявшись с 90-й строчки на 84-ю. МГУ стал единственным отечественным вузом, попавшим в топ-100 ведущих университетских центров планеты.

12 конференция по нанотоксикологии в Зальцбурге
9, 10 и 11 - 13 сентября 2019 года в Зальцбурге (Австрия) состоится уникальное событие - первый международный научный форум для молодых ученых (International Young Scientist Forum) в рамках 12 международной конференции по нанотоксикологии, а также сама ежегодная конференция. Конференцию посетит команда РФ, отобранная в рамках конкурса National Student Team Contest XIII Всероссийской олимпиады по нанотехнологиям, а также приглашаются к участию все желающие.

Названы победители всероссийского фотоконкурса «Снимай науку!»
Всероссийский фотоконкурс «Снимай науку!» проходил со 2 апреля по 31 мая 2019 года. В нем приняли участие более 400 авторов. Из 2182 фотографий экспертная комиссия выбрала 16 лучших работ, которые войдут в экспозицию фотовыставки «Снимай науку!» в парке искусств «Музеон» (Москва).

Новые гибридные перовскитоподобные материалы для солнечной энергетики
Тарасов Алексей Борисович, Постнаука
Как сохранить энергию солнца или ветра? Как может измениться стационарная энергетика в будущем? В проекте «Мир вещей. Из чего сделано будущее» совместно с Фондом инфраструктурных и образовательных программ (группа РОСНАНО) Постнаука рассказывает о последних открытиях и перспективных достижениях науки о материалах.

Материалы к защитам квалификационных работ бакалавров на ФНМ МГУ в 2019 году
Коллектив авторов
4-7 июня 2019 г. (11-00) в аудитории 221 корпуса Б пройдут защиты ВКР бакалавров ФНМ МГУ.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2019 году
Семенова Анна Александровна
21-24 мая 2019 года в лабораторном корпусе Б пройдут защиты магистерских диссертаций выпускниками ФНМ МГУ.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.