Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Рис. 1. Структура и принцип работы протонных элементов памяти.

Рис. 2. Полупроводниковые характеристики энергозависимой памяти с различной структурой (см. вставки).

Рис. 3. Изменение функциональных свойств образцов со временем.

Рис. 4. Полупроводниковые характеристики энергонезависимой памяти.

Флэш-карты на подвижных протонах

Ключевые слова:  оперативная память, полимеры, хранение информации

Опубликовал(а):  Росляков Илья Владимирович

21 октября 2008

Увеличение плотности записи информации на флэш-картах сопровождается постоянной модификацией ячеек памяти. Для этой цели современной наукой уже предложено много новых материалов и физических принципов. В настоящее время выделяют три перспективных направления исследований: материалы на основе нитридов различных металлов (AlN, GaN); ферроэлектрическая поляризация диэлектриков (ferroelectric memory); движение протонов в изолированном слое (proton memory). Последний подход наиболее привлекателен для создания запоминающих устройств, так как требует минимального напряжения для записи информации. К сожалению, промышленное производство протонной памяти неизбежно столкнется с рядом трудностей. Использующие в настоящее время методы генерации протонов (высокотемпературная обработка и ионное легирование) не позволяют с достаточной точностью контролировать концентрацию протонов и, как следствие, функциональные характеристики запоминающих устройств.

В работе “Molecular Storage Elements for Proton Memory Devices”, опубликованной в журнале “Advanced Materials”, предлагается простое решение технологической проблемы. Использование в качестве базового материала протонсодержащих полимеров значительно понижает стоимость устройства. Синтез из растворов методом spin-coating прост в исполнении и позволяет в широких пределах варьировать толщину пленки, концентрацию протонов и протонную проводимость материала, что необходимо для контроля характеристик получаемых устройств.

В качестве донора протонов авторами использована 12-фосфорновольфрамовая кислота H3PW12O40 (HPW), стабилизированная полиметилметакрилатом (PMMA). Полученное устройство имеет слоистую структуру, в которой 270 нм слой HPW/PMMA расположен между двумя ионоблокирующими электродами (IBE). Под действием электрического поля кислота диссоциирует практически нацело с образованием трех H+ (рис. 1а-с). Протоны мигрируют в сторону от положительного электрода, создавая, таким образом, разность потенциалов, которая исчезает после снятия напряжения. Добавление дополнительного слоя, способного химически связывать протоны (в работе использовано сильное основание 2-аминоантрацен - AA), позволяет получать энергонезависимую память. В этом случае ассоциация кислоты после снятия напряжения не происходит, и заданный потенциал сохраняется (рис. 1e-d).

Таким образом, предлагаемая в работе методика подходит для синтеза как энергозависимой, так и энергонезависимой памяти.


Источник: Advanced Materials



Комментарии
Владимир Владимирович, 21 октября 2008 12:57 
Интересно!
Почему только, 2-аминоантрацен - "сильное основание"? И любопытно (не читая работы), 2-аминоантрацен используется просто как нелетучее основание или его восстановительные свойства - тоже фактор?

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нанопровод
Нанопровод

Все члены сборной России получили медали на 30-й Международной биологической олимпиаде для школьников
21 июля в Сегеде (Венгрия) подвели итоги 30-й Международной биологической олимпиады для школьников. Российская сборная на состязании завоевала три серебряные медали и одну бронзовую.

Шесть медалей завоевали российские школьники на 60-й Международной математической олимпиаде
Стали известны итоги 60-й Международной математической олимпиады для школьников, которая проходила в Бате (Великобритания). Российская сборная завоевала две золотые и четыре серебряные медали.

Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019
Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019. Тезисы доклада Быкова В.А.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.