Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1 Диапазон фильтрации
Рис. 2. Рулонный элемент
Рис. 4. Подвижность
Рис.5. Принцип газоразделения
Рис. 6. Установка ГРАСИС
Рис. 7. Внешний вид газоразделительных аппаратов ГРАСИС
Рис. 7. Внешний вид газоразделительных аппаратов ГРАСИС
Рис. 8. Каталитический мембранный реактор
Рис. 9. Контактор
Рис. 10. Цеолиты. Поры синтетического цеолита типа A образующие канал. Если к другим 8-членным «окнам» присоединить такие же фигуры, то получится трёхмерная система пересекающихся каналов - молекулярное сито, со сквозными калиброванными отверстиями, что благоприятно для тонкого разделения.
Рис. 10. Цеолиты. Структура цеолита Ж, в котором часть пор содержит щёлочно-галоидные кластеры, с различными точечными дефектами. Na3Al3Si3O12(NaHal)х, где 0 < х < 1
Микропористая структура цеолита, ZSM-5
Внешний вид минерала

Популярно о НАНО: Разделяй и властвуй

Ключевые слова:  Интернет-олимпиада, мнение, Наноазбука

Автор(ы): Дзюбенко Егор Вячеславович

Опубликовал(а):  Гудилин Евгений Алексеевич

23 мая 2009

Предлагаем Вашему вниманию самые оригинальные работы конкурса популярно о НАНО, организованного в рамках Третьей Всероссийской Интернет-олимпиады "Нанотехнологии - прорыв в Будущее" Российской корпорацией нанотехнологий. Автор: Дзюбенко Егор Вячеславович

Нанотехнология сегодня – особенно динамично развивающаяся отрасль народного хозяйства. В связи с этим в СМИ, в научной литературе, да и просто в умах интересующихся людей эта тема занимает весьма значимое место. И это радует – такое положение вещей способствует адекватному развитию наукоёмких направлений в целом и нанотехнологии в частности. Но, к сожалению, поспешность, подчас имеющая место при введении приставки «нано» в обиход, приводит к появлению «нанопурги». Этим термином можно обозначить ажиотаж и огромное количество неточностей при популярном изложении основ нанотехнологии, что, учитывая серьёзность и важность предмета, недопустимо. Решение проблемы – разделить эту беспрецедентно широкую тему на конечное число более мелких.

Я остановлюсь на мембранных технологиях, применительно к которым приставка «нано» совершенно оправдана. Оправдана потому, что в мембранах формируются наноразмерные поры при самоструктурировании наноразмерных частиц (по специальному решению РАН нанотехнологией называют работу с объектами размера 1-100нм). Несмотря на объёмистость этого сегмента нанотехнологий, я постараюсь, опустив громкие слова и непонятные формулы, дать краткий обзор основ мембранных нанотехнологий и областей их применения.

«Вода, кругом вода, и нечего пить…» - зачастую восклицали истощённые обезвоживанием мореплаватели, попавшие в столь убийственный для них затяжной штиль. Впору скоро так будет сказать и нам. Проблема чистой воды для питья и для промышленности в современном мире стоит настолько остро, что период 2005 – 2015гг объявлен ООН десятилетием «Вода для жизни». Решать эту проблему немыслимо без мембран, и вскоре мы увидим, почему.

Представление непосвящённого человека об очистке воды основано на поглотительных фильтрах, когда вода, проходя через некий материал, оставляет на нём все вредные частицы и вещества. Очистка воды с помощью мембраны гораздо интереснее. Мембрана, от греч. «перепонка, перегородка», это тонкий слой материала, не обязательно однородного, который способен разделять раствор на две части. Если мы говорим о мембране для очистки воды, то вода беспрепятственно проходит через мембрану, а вот частицы и вещества, которые она с собой несёт, остаются в растворе по другую сторону перегородки. Прошедшая вода называется пермеатом ( от англ. Permeate – проникать), и называть её фильтратом в строгом смысле неверно. В пермеате присутствуют также и вещества, размер молекул которых ниже порога отсечения. Растворы по обе стороны мембраны отводятся в проточном режиме. На подобном принципе основаны и многие другие процессы мембранного разделения, эффективность и широта применения которых позволяет с улыбкой сказать: «Разделил – и властвуй».

Однако описанная схема имеет свои проблемы. Основная из них – концентрационная поляризация. Она заключается в локальном увеличении содержания отсекаемых молекул в примембранном слое, что увеличивает вероятность их проникновения и понижает эффективность разделения. Эту проблему решают для жидкостей, используя так называемые турбулизаторы, позволяющие выровнять концентрацию веществ по всей толще подаваемого раствора.

Водоочищающая мембрана состоит из наноразмерных агрегатов молекул полимера, структурированных таким образом, что образуют поры определённого радиуса, в итоге сливающиеся в лабиринт, от чего, собственно и возникает способность пропускать одни частицы и не пропускать другие. При этом следует ещё раз подчеркнуть, что эти частицы не оседают на мембране. Конечно, по тем или иным причинам вещества задерживаются на разделяющей поверхности, и тогда её надо очищать.

По размеру отсекаемых частиц различают ( см. рис 1 в Приложении) микро-, ультра-, и нанофильтрацию. Как видно из рисунка, микрофильтрация попадает в область нанотехнологий частично, а последние две – полностью.

Технически эти процессы осуществляют с помощью установок на рулонных элементах, половолоконных, погружённых и др. На рис. 2 рассмотрено устройство рулонного элемента, имеющего две гофрированных для увеличения площади рабочих мембранных поверхности. На рис. 3 – фото установок различного типа.

Применение подобных устройств даёт отличные результаты при водоподготовке в пищевой промышленности, создании замкнутых циклов возврата воды на производстве, при решении экологических проблем. Так, финская компания Metso Paper использует мембраны на основе регенерированной целлюлозы с порогом отсечения 30 000 Дальтон[1] для очистки и концентрирования технологических и сточных вод в бумагоделательной промышленности. При концентрировании полезным продуктом является не столько чистая вода, сколько раствор с высоким содержанием отсечённых веществ. Мембраны используются для очистки акватории Одесского морского порта от нефтезагрязнений, спасают жизнь больным, нуждающимся в гемодиализе[2].

Другая важная отрасль использования мембранных нанотехнологий – газоразделение. В этом случае принцип функционирования другой. Здесь разделение происходит из-за разной скорости проникновения (диффузии) газов через мембрану. Существует особая шкала подвижности газов, представленная на рис.4. Согласно ей более «быстрые» газы будут проходить через специальным образом наноструктурированный материал быстрее, а текущий через установку газ обогатится более «медленными». Часто таким материалом являются цеолиты, о которых расскажу позже, но могут применяться и полимерные наноматериалы.

Движущей силой переноса газов через мембрану является разность парциальных давлений[3]. При продвижении смеси газов через разделитель более подвижный газ преимущественно проходит через мембрану, руководствуясь принципом «хорошо там, где нас нет». А по научному – по градиенту концентрации. Сказанное поясняет рис. 5. Интересен тот факт, что при газовом разделении нет проблемы концентрационной поляризации из-за высокой скорости диффузии газов.

Одной из ведущих в России и в мире компаний, специализирующихся на мембранном газоразделении, является Грасис (газоразделительные системы). Принцип и схема работы их установки по получению азота из воздуха представлены на рис. 6. Внешний вид – рис. 7. Подобные установки применяются на многотоннажных производствах азота, аргона, очистки сопутствующего нефтяного газа, в нефтяной отрасли.

Особенно интересная область применения мембран – в тонком химическом синтезе и в химическом синтезе вообще. Ни для кого не секрет, что многие химические, а в особенности биохимические реакции являются обратимыми и с течением времени приходят к состоянию равновесия. Простой и элегантный способ сдвинуть равновесие в прямую сторону – отводить продукт из зоны реакции. Есть фундаментальный принцип, согласно которому что мы уберём, то и будет образовываться. Это принцип Ле Шателье. А мы уже знаем, что мембраны, созданные с помощью нанотехнологий, могут отделять частицы друг от друга на основании их размера, формы и иногда химической природы. Это и используется при создании мембранных реакторов и контакторов. Реактор представляет собой систему, содержащую исходные вещества и катализатор, ускоряющий реакцию. Беда только, что катализатор ускоряет и прямую, и обратную реакцию. Поэтому его закрепляют на селективной мембране, которая будет отделять реагенты от продуктов. Такой реактор называют каталитическим. На рис. 8 показан принцип работы каталитического мембранного реактора. Хороший пример работы такого устройства – получение водорода при превращении метана в особых условиях.

Но бывают и инертные реакторы, катализатор в которых находится не на мембране, а в растворе с реагентами. Принцип работы тот же – удаление продуктов. Биологи, а конкретно биохимики и биотехнологи, применяют такие реакторы для проведения в искусственных условиях реакций, похожих на те, что идут в организме живых существ. Эти превращения регулируются особыми биокатализаторами – ферментами, образующимися в живых объектах. Для подавляющего большинства ферментов характерно продуктное ингибирование – потеря активности при накоплении продуктов. Понятно, что без мембраны тут далеко не уйдёшь.

Другое применение мембран для синтеза – создание контакторов. Дело в том, что технологи сталкиваются со значительными проблемами при промышленном внедрении гетерофазных[4] реакций. Тогда им приходится иметь дело с мембранами, через которые реагирующие вещества могут диффундировать без смешения фаз. Контакторы используют и без проведения химических реакций. Например, для удаления газов из жидкости, или, наоборот, обогащения жидкости газом. В этом случае используют не пропускающую воду мембрану, выборочно проницаемую для определённого газа. Пример такого контактора на рис. 9.

Говоря о газоразделении, я упомянул цеолиты.… И обещал про них рассказать. Так вот до сих пор я мало говорил о самом материале, из которого создаётся мембрана. На самом деле применяют различные мембраны. Большинство из них – структурированные ассоциаты полимеров. Основанные на целлюлозе, поливинилиденфториде, на полипропилене и других, они по виду отдалённо напоминают бумагу. Но есть и твёрдые мембраны, например, созданные из цеолита. Цеолиты — пористые и прочные алюмосиликатные кристаллы с очень сложной структурой, элементарный кирпичик которой содержит многие десятки атомов.

Кристаллическая структура цеолитов образована тетраэдрическими группами SiO2/4 и AlO2/4, объединёнными общими вершинами в трёхмерный каркас, пронизанный полостями и каналами (см. рис 10), что позволяет использовать их как молекулярные сита. Другим важным свойством цеолитов является способность к ионному обмену, они способны селективно выделять и вновь впитывать различные вещества, а также обменивать катионы (положительные ионы).

На примере цеолитов особенно ярко видны характерные особенности наноматериалов, приводящие к широким возможностям их применения. Это, во-первых, красивая самоструктурирующаяся кристаллическая решетка. Их поры, правильной формы, соединяясь между собою через «окна», образуют внутри кристаллов правильную сеть сквозных каналов (галерей). Во-вторых, обратимое, высокозависящее от условий взаимодействие на наноуровне с водой, гидратированными ионами и молекулами. Наконец, возможность контроля их свойств при применении тонких технологий, приводящая к широкому их разнообразию.

Конечно же, мое повествование далеко не полное, я остановился лишь на основных классах мембран и их применении. А ведь есть еще и интересные процессы обратного осмоса, диализа, мембраны жидкие, ионообменные, биологические, о которых можно говорить бесконечно. Однако человек заинтересовавшийся может воспользоваться прилагаемыми ссылками и понять предмет глубже. В заключение остаётся только добавить, что, несмотря на трудоёмкость работы в сфере нанотехнологии мембран, эта интереснейшая область должна и будет развиваться, открывая всё новые возможности применения этих удивительных наноматериалов.

Ссылки.

  1. А.Г. Первов. Серия. Критические технологии. Мембраны, 2002, № 2 (18)
  2. Первов А.Г., Хаханов С.А., Дудкин Е.В. Крит. технол. Мембраны. 2001. № 11, с. 3–11. Рус., рез. англ.
  3. Терпугов Г.В.. Автореф. дис. докт. техн. наук. Рос. хим.-технол. ун-т, Москва, 2000, 32 с., ил. Рус.
  4. Доклад «Наноструктурированые материалы для контроля и очистки жидких сред» ЗАО НТЦ «Владипор» на конференции IWA
  5. Дытнерский Ю.И. Мембранное разделение газов. 1991
  6. Применение газоразделительных мембранных модулей для создания инертной среды в пожарных участках
  7. Мембранная технология газоразделения ГРАСИС
  8. M. E. E. Abashar. Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors, Department of Chemical Engineering, College of Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
  9. Fogler, H. Scott. Elements of Chemical Reaction Engineering, 4rd Ed. Prentice-Hall: Upper Saddle River, NJ, 2005
  10. F. Wiesler, Membrane Contactors, ULTRAPURE WATER MAY/JUNE 1998 – UP130427
  11. Р.А. Денисов, А.В. Чернышев, С.А. Якушев. «Молекулярные сита для газоразделительных мебран». - Материалы КОНКУРСА РУССКИХ ИННОВАЦИЙ 2006/2007, Номинация: Проект «Белой книги», Нанотехнологии и новые материалы. Москва, Россия, 16 стр.

[1] Дальтон – мера молекулярного веса полимера, размера его молекулы.

[2] Гемодиализ – отделение ядов из крови больного, например, искусственная почка.

[3] Давление индивидуального газа в смеси называется парциальным, мера его концентрации

[4] Гетерофазные реакции. В них реагирующие вещества находятся в составе смесей в разных фазовых состояниях. Фаза – комплекс физических характеристик вещества. Например, растворённое в масле вещество реагирует с водорастворимым. Или газ реагирует с жидкостью.

Прикрепленные файлы:
dzyubenko.doc (1.65 МБ.)

 

В статье использованы материалы: Творческий тур


Средний балл: 9.6 (голосов 5)

 


Комментарии
Степанов Николай, 25 мая 2009 02:03 
Статья интересная... Надо бы только этому молодому человеку раз и навсегда выучить стандартные формы библиографического описания (различных) источников и потом всегда их использовать. И это пригодится ему в течение всей его жизни в науке...

Справочного материала на эту тему в Сети навалом. Вот, к примеру, первый попавшийся:

БИБЛИОГРАФИЧЕСКАЯ ЗАПИСЬ. БИБЛИОГРАФИЧЕСКОЕ ОПИСАНИЕ ЭЛЕКТРОННЫХ РЕСУРСОВ

Наверняка где-то есть и более простые и практичные справочники такого рода...

Вот хотя бы здесь: Библиографическое описание и библиографическая ссылка
А на основе чего определена подвижность газов? Я думал она должна быть похожа на эффузию и определяться только молярной массой. А тут как-то иначе...
Молодец! Отличная статья!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Микрофазовое разделение в блок-сополимерах
Микрофазовое разделение в блок-сополимерах

Поступай без экзаменов в совместную магистратуру "ИИ в биотех системах" ИТМО, Татнефть и АГНИ
Университет ИТМО, компания Татнефть и Альметьевский государственный нефтяной институт запускают совместную программу магистратуры "Искусственный интеллект в биотехнологических системах". Программа направлена на биологов, биотехнологов и химиков, готовых оттачивать навыки программирования и применять data-driven подход для решения фронтирных научных задач и создания реальных продуктов для вывода на рынок.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Оптическая квантовая память на фотонном эхе. Ударим фуллереном по графену! Полу-ван-дер-ваальсовский композит. Монослои нитрида бора вместо антибиотиков.

Наносистемы: физика, химия, математика (2022, Т. 13, № 3)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume13/13-3
Там же можно скачать номер журнала целиком.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2022 году
коллектив авторов
24 - 27 мая пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Пятилетка Олимпиады "Нанотехнологии - прорыв в будущее!": что было и что может быть в будущем
Е.А.Гудилин , А.А.Семенова
Уже более 15 лет живет и развивается Всероссийская олимпиада "Нанотехнологии - прорыв в будущее!". За всю историю Олимпиады было предложено много инновационных решений, охват олимпиадой составил более 50 000 участников по всей Российской Федерации и странам ближнего зарубежья. В статье приводятся статистические данные по Олимпиаде и возможные пути ее дальнейшего развития.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.