Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Жизнь наноматериалов

Ключевые слова:  наноматериалы, олимпиада

Опубликовал(а):  Гудилин Евгений Алексеевич

03 декабря 2018

Прошло более 10 лет с начала нанотехнологического бума в России. Нельзя сказать, что произошли совершенные чудеса, однако наноматериалы надолго, вероятно, навсегда, вписались в самые высокорейтинговые статьи, вошли в образование и развивающуюся наноиндустрию. И в этом нет ничего необычного, только закономерная поступь развития науки.

Человеку, особенно неискушенному в скучных научных изысканиях, свойственно верить в чудеса и искать универсальные средства для достижения всех своих желаний, чтобы легко получить все и сразу. Как философский камень - для алхимиков древности или как волшебная палочка Гарри Поттера - для мечтателей современности. Судя по тому, что говорят в СМИ, сейчас как средство быстрого решения почти всех современных целей и вызовов, стоящих перед Человечеством, как своеобразная чудодейственная панацея, рассматриваются нанотехнологии. Оправдан ли этот эйфорический оптимизм и можно ли воплотить нанотехнологии в реальность? Реальность сама подсказывает, что это вполне возможно и вопрос как раз в том, что двигателем здесь является уже не эйфория и завышенные ожидания, а прагматический расчет, технико - экономические обоснования и конкурентные коммерческие преимущества ряда "нанопродуктов", если они основаны на реальных научных достижениях.

Исследовательские работы последних 10-15 лет, действительно, открыли важную роль нанотехнологий в различных областях науки и техники (информационных технологиях, медицине, физике, химии, материаловедении, биологии, экологии и т.д.). Произошла своеобразная революция, поскольку нанотехнологический подход означает целенаправленное регулирование свойств объектов на молекулярном и надмолекулярном уровне, что не было реализуемо еще несколько лет назад. Лучшим символом идеи универсального получения наноматериалов (и вообще материалов с контролируемыми свойствами) можно считать "демона Макксвелла" - гипотетического существа, которое может сортировать молекулы и, следовательно, могло бы "собирать" любой материал с любыми свойствами из элементарных "кирпичиков" - атомов. Увы, дойти до такой фантастической "детализации" процесса синтеза невозможно. Действительно, сейчас с помощью очень тонких игл (острий атомно-силовых микроскопов и других приемов) можно упорядочить нужные атомы по-штучно (это впервые сделали ученые фирмы IBM с атомами газа кислорода, которым мы дышим). Но... в количестве всего нескольких штук. Для того, чтобы собрать таким образом сколько-либо полезную и реально работающую на человека структуру, потребуется бесконечно большое время и бесконечно большое количество энергии (работы), причем в условиях космически низких температур - иначе атомы самопроизвольно разбредутся во все стороны. Это - одно из выражений так называемого второго закона термодинамики, который уж точно носит универсальный характер и в своей простейшей формулировке гласит: чудес не бывает - вода в чайнике сама собой не может закипеть или замерзнуть, а сам чайник (все его миллиарды миллиардов атомов) не могут одновременно "прыгнуть" в одном направлении, так чтобы сам чайник самопроизвольно переместился в пространстве. Да, действительно, сейчас очень много говорят о "нанороботах" - подобных демону Максвелла искусственных машинах небольшого размера, которые, как предполагают, могут делать все. Однако кто сделает сами "нанороботы" настолько сложными, чтобы они могли выполнять требуемые от них действия?

Таким образом, мы приходим к основному вопросу - вопросу о сроках реализуемости нанотехнологических идей и путей создания эффективных (в том числе - экономически) нанотехнологий для массового использования. Решения есть, напрмер, при использовании принципов самоорганизации вещества наноматериалы могут создаваться "снизу вверх", то есть, как и предполагалось выше, от молекул к надмолекулярным структурам, в отличие от практикуемого до последнего времени подхода создания наноматериалов "сверху вниз", когда мелкие объекты создаются из крупных путем измельчения. Управляя размерами и формой наноструктур, можно в определенных рамках придавать таким материалам совершенно новые, практически выгодные (часто рекордные!), свойства, резко отличающиеся от имеющихся у обычных материалов - прародителей, то есть добиться желаемой цели. Однако для этого нужно детально исследовать всю систему, а система должна быть сложной и открытой, иначе упорядочения с образованием необходимой, правильно собравшейся, структуры не произойдет. Подходы самоорганизации (коллективного поведения атомов с образованием упорядоченной структуры) сокращают наши усилия, однако такие процессы реализуются в узком диапазоне условий - и при полном соблюдении всех законов нелинейной термодинамики, то есть при наличии большого числа ограничений. На этом примере становится понятно, что на самом деле основным компонентом развития нанотехнологий должен быть выверенный, профессиональный научный подход, требующий больших усилий, знаний и финансовых вложений в дорогостоящие фундаментальные исследования.

Если не учитывать налет ажиотажа, существование наноматериалов закономерно и не подрывает никаких известных нам основ мироздания, просто пришло их время. Возникновение нанотехнологий "просто" означает качественный скачок в философии получения практически важных веществ - создание невидимых простых глазом сложных устройств и систем, размеры которых находится в диапазоне размеров надмолекулярных образований. "Обычная" химия работает с молекулами и атомами, в этом уже давно нет ничего необычного. "Обычная" промышленность работает с тоннами и кубометрами, к этому тоже все привыкли. Наноматериалы - продукт нанотехнологий - это нечто особое, что гораздо сложнее атомов и молекул, но как продукт высоких технологий не требует многотоннажного производства, поскольку даже один грамм такого "хайтековского" вещества способен решить множество проблем. Это - пример современной "гомеопатии", которая поставлена на вполне научную основу и глубоко продумана.

Наноматериалы - не один "универсальный" материал, это обширный класс множества различных материалов, объединяющий их различные семейства с практически интересными свойствами. Заблуждением является и то, что наноматериалы - это просто очень мелкие, "нано"частицы. На самом деле, многие наноматериалы являются не отдельными частицами, они могут представлять собой сложные микрообъекты, которые наноструктурированы на поверхности или в объеме. Такие наноструктуры можно рассматривать в качестве особого состояния вещества, так как свойства материалов, образованных с участием структурных элементов с наноразмерами, не идентичны свойствам объемного вещества.

Итак, наноматериалы характеризуются несколькими основными чертами, делающих их вне конкуренции по сравнению с другими веществами, находящими практическое использование в деятельности человека.

Во - первых, все наноматериалы действительно состоят из очень мелких строительных блоков, которые нельзя увидеть невооруженным глазом. Это первый плюс - суперминиатюризация, приводящая к тому, что на единице площади можно разместить больше функциональных наноустройств, что жизненно важно, скажем, для наноэлектроники или для достижения суперплотной магнитной записи информации до 10 Тиррабит на 1 квадратный сантиметр. Кроме того, ничтожный размер делает для наноустройств доступным почти любые закоулки человеческого тела или части макромашин, в которые не проникнет ничто другое. Сама приставка "нано" возникает из-за того, что, по рекомендациям Международного Союза Чистой и Прикладной Химии (IUPAC), хотя бы по одному из измерений (длине, ширине или высоте) частицы должны иметь размер менее 100 нанометров (сто миллиардных метра).

Во-вторых, наноматериалы обладают большой площадью поверхности, ускоряющей взаимодействие между ними и средой, в которую они помещены. Например, каталитически активные материалы позволяют в десятки тысячи и даже миллины раз ускорить химические или биохимические реакции. Интересное применение - разложение воды для водородной энергетики на водород и кислород в присутствии наночастиц диоксида титана, который всем нам известен, как компонент титановых белил. Нанофильтры позволяют отсеять бактерии или эффективно поглотить примеси или токсины. Наночастицы также могут "таскать" за собой необходимые лекарства или ферменты, программируемо доставляя их к заранее выбраной цели, например, раковой опухоли, а также при гипертермии (дозируемом перегреве опухоли вплоть до гибели раковых клеток среди окружающих их нормальных тканей).

В - третьих, наноматериалы уникальны тем, что такое вещество находится в особом, "наноразмерном", состоянии. Изменения основных характеристик обусловлены не только размером, но и проявлением квантовомеханических эффектов при доминирующей роли поверхностей раздела. Эти эффекты наступают при таком критическом размере, который соизмерим с так называемым корреляционным радиусом того или иного физического явления (например, с длиной свободного пробега электронов, фононов, длиной когерентности в сверхпроводнике, размерами магнитного домена или зародыша твердой фазы и др.). Характерной особенностью наночастиц является также отсутствие точечных дефектов. Это делает, в частности, полупроводниковые наночастицы ("квантовые точки") идеальными элементами совершенных энергосберегающих лазерных и светоизлучающих элементов. А индивидуальные углеродные нанотрубки обладают прочностью, в десятки раз превышающей прочность лучшей стали, при этом они во много раз выигрывают у стали и по своей удельной массе. Все эти признаки вполне объясняют тот факт, что даже грамм наноматериала может быть более эффективен, чем тонна обычного вещества, и что их производство - вопрос не количества, не тонн или километров, а качества человеческой мысли, "ноу-хау" (от английской know how - "знаю как").

Начали борьбу за нанотехнологии американцы - и не случайно, поскольку это могла реально сделать лишь сильная и технически развитая страна, не чуждая политизации научных идей. В 1959 г. будущий нобелевский лауреат по физике Р.Фейнман прочитал лекцию с аллегорическим названием "Внизу полным-полно места: приглашение войти в новый мир физики, в мир миниатюризации>. В ней Фейнман рассказал о фантастических перспективах, которые сулит изготовление материалов и устройств на атомном или молекулярном уровне. В 1974 г. на конференции Японского общества точного машиностроения впервые был использован термин "нанотехнология". В год начала перестройки в бывшем СССР (это, конечно, совпадение), а точнее, в октябре 1985 г., был сделан доклад национальной академии США посвященный созданию новых материалов, а в 2001 г. была объявлена национальная нанотехнологическая инициатива США, которая, что важно, сопровождалась вливанием очень весомых средств (полмиллиарда доллара) из бюджета Соединенных Штатов. Следует признать, что пример был очень заразителен - к 2004 г. мировые инвестиции составили 12 миллиардов долларов. Началась нанотехнологическая гонка.

В то же время, возникновение нанотехнологий и исследование наноматериалов глубоко закономерно. Сначала были путешествия, великие географические открытия и новые торговые пути. Человек изучил сполна два измерения нашего пространства - георгафические широту и долготу. Затем разнообразные капитаны Немо исследовали глубины океана, а Юрий Гагарин вышел за рамки Земли - человек начал покорять Космос. Это, несомненно, дало чрезвычайно многое - и перспективы освоения новых горизонтов, и понимание процессов, происходящих на нашей Земле и вне ее, особенно в области освоения новых источников энергии. Людям покорилось третье измерение. Потом люди задумались о времени и постепенно научились изучать как геологические и космические события, длящиеся миллиарды лет, так и быстротечные фемтосекундные процессы, значительны более быстрые, чем, скажем, выстрел или удар молнии. Это было уже четвертое измерение, дающее ключ к пониманию того, как именно все ранее изученные процессы происходят в действительности. На рубеже 20 и 21 веков случилось, наконец, новое чудо - мы вплотную приблизились к покорению пятого измерения - Микромира, что и ознаменовалось возникновением нанотехнологий.

"Гагариным" микрокосмоса был изобретатель первой увеличительной линзы - Левенгук. В настоящий момент даже самые дорогие оптические микроскопы, увы, для визуализации нанообъектов принципиально неприемлемы в силу своего малого разрешения и увеличения, которое должно составлять не тысячу крат (это предел оптических микроскопов), а сотни тысяч и миллионы раз. Так, типичные нанообъекты в сотни и тысячи раз меньше бактерий, которые наблюдал Левенгук. Они во столько же раз меньше нас с вами, во сколько раз человеческое тело меньше планеты Земля. Поэтому сейчас бороздить просторы микромира могут лишь те, кто обладает дорогим оборудованием - наисовременнейшими электронными и атомно-силовыми микроскопами, которые, в отличие от оптических микроскопов, стоят сотни тысяч и даже миллионы долларов. И даже этого мало - этим оборудованием нужно уметь профессионально пользоваться. В то же время, добиться стадии визуализации - необходимо, но совершенно недостаточно для принадлежности к касте исследователей наномира.

Нанотехнологии - чрезвычайно сложная, профессиональная, междисциплинарная область, объединяющая на равных усилия дипломированных химиков, физиков, материаловедов, математиков, медиков, специалистов в области вычислительных методов и др. Талантливые дилетанты и романтики, к сожалению, часто не обладают необходимой подготовкой или необходимыми возможностями, а также не всегда могут распознать, что они изобретают (в который раз!) велосипед, не зная текущего положения дел в том ворохе разноплановой научной информации, которая появляется ежечасно. В области наноматериалов удивительным образом переплетены как глубоко фундаментальные научные основы, так и прорывные (как любят говорить наши официальные лица) аспекты практического использования человеческих знаний. Только полностью контролируемая исследователем цепочка от новой (или на современном политико-экономическом языке - инновационной) идеи до синтеза, анализа и установления практически-важных свойств могут помочь войти в удивительный клуб исследователей наномира.

Нанотехнологии - детище современной фундаментальной науки. Последние достижения свидетельствуют о возможности создания новых поколений функциональных материалов и проекты возможного использования нанотехнологий затрагивают практически все области человеческой деятельности. В то же время, постепенно происходит переосмысление научных фантазий, которые приобретают черты реалистичности. Нанотехнологии - капиталовложение человечества на долгие годы, но только если им разумно распорядиться и позволить ученым, а не политикам или менеджерам, использовать нанограммы высокотехнологичной продукции для будущих мегаоткрытий.


В статье использованы материалы: олимпиада


Средний балл: 10.0 (голосов 1)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Микрогнездо
Микрогнездо

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
А.А.Семенова
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.