Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Графен помог ученым МГУ понять механизм работы литиевых аккумуляторов нового типа

Ключевые слова:  литий - воздушные аккумуляторы

Опубликовал(а):  Гудилин Евгений Алексеевич

10 августа 2018

По сообщениям Пресс-службы МГУ, сотрудники химического факультета и факультета наук о материалах МГУ имени М. В. Ломоносова запатентовали электрохимическую ячейку, позволяющую с помощью высокочувствительных методов анализа поверхности изучать химические процессы в материалах аккумуляторов.

Разработка позволит понять процессы, возникающие при использовании литий-воздушных аккумуляторов. Этот тип аккумуляторов при одинаковой массе обладает в 5 раз большей ёмкостью, чем широко распространённые литий-ионные. Чтобы повысить эффективность работы аккумуляторов, ученые во всем мире предлагают использовать новые химические реакции, которые, протекая при зарядке и разрядке батареи, позволяют получить более высокий удельный энергозапас.

Одной из наиболее перспективных альтернатив самым распространенным сейчас литий-ионным аккумуляторам считаются литий-воздушные элементы. Литий-воздушные аккумуляторы вырабатывают электроэнергию буквально из воздуха: принцип их работы основан на окислении лития кислородом воздуха до пероксида лития Li2O2. Они легкие и могут обеспечить примерно в 5 раз большую удельную энергию, чем литий-ионные аккумуляторы. Но, несмотря на преимущества, промышленное производство литий-воздушных аккумуляторов пока не запущено: разработчики сталкиваются с фундаментальными и технологическими сложностями. Одним из существенных недостатков инновационных аккумуляторов стала быстрая деградация положительного электрода батареи, который, как правило, сделан из углерода. Уже после десятка циклов зарядки-разрядки аккумулятор перестает работать. Чтобы определить insitu(т.е. непосредственно во время работы) процессы, которые приводят к необратимым изменениям в электролите и электродах, специалисты создают модельные электрохимические ячейки.

С помощью своей разработки научная группа химиков из МГУ под руководством доктора химических наук, профессора Лады Яшиной выяснили, что к разрушению положительного электрода в литий-воздушных батареях приводит реакция углерода с очень активным и при этом короткоживущим супероксидом лития LiO2, а не пероксидом Li2O2, как считалось ранее. Супероксид в ячейке «живет» всего несколько секунд, однако за это время успевает окислить поверхность углеродного электрода. Ключевым аналитическим методом, прояснившим причину деградации электрода, стала рентгеновская фотоэлектронная спектроскопия. Метод позволяет детально исследовать процессы на поверхности, при этом глубина зондирования может достигать всего одного атомного слоя. Однако в обычных электрохимических ячейках электроды или слой электролита оказываются слишком толстыми и поглощают фотоэлектроны, тем самым мешая «увидеть», что происходит на поверхности раздела электрод-электролит. Сотрудники МГУ решили эту проблему, нанеся на твердый электролит одноатомный графеновый слой, который прозрачен для фотоэлектронов.

«В использовании графена сегодня нет ничего необычного, во многих лабораториях по всему миру научились выращивать графен и переносить его на нужную подложку, — поясняет один из авторов патента старший научный сотрудник кафедры неорганической химии Даниил Иткис. — Обычно графен выращивают на поликристаллической медной фольге. Мы научились переносить графен на самые разные подложки, в том числе на твёрдый литий-проводящий электролит, о котором идет речь в патенте».

Разработанная ячейка позволяет исследовать процессы не только в литиевых батареях, но и в источниках тока с другими носителями заряда. Например, благодаря использованию графена, действующего в ячейке в качестве рабочего электрода, можно определить, при каких потенциалах электролиты различных источников тока перестают быть устойчивыми, и какие процессы сопровождают деградацию электролитов. Поэтому разработка поможет понять, как улучшить аккумуляторы самого разного типа.

Автор фотографий - Дарья Смирнова/Кафедра фотожурналистики и технологий СМИ МГУ.





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Мезопористый оксид церия-циркония
Мезопористый оксид церия-циркония

Дистанционный лекторий ФНМ МГУ
Опубликованы приглашения на 4 интересные лекции онлайн лектория проекта дистанционного образования факультета наук о материалах МГУ имени М.В.Ломоносова на ближайшую неделю.

Евгений Кац: Перовскит, загадка названия и история открытия
28 мая 2020 г. в 18:00 мск. в рамках развития дистанционного образования ФНМ МГУ имени М.В.Ломоносова состоится онлайн лекция известного ученого, профессора Евгения Каца (Ben-Gurion University of the Negev) "Перовскит, загадка названия и история открытия", который известен не только своими выдающимися научными достижениями в области химии твердого тела, углеродных наноматериалов, перовскитной фотовольтаики, но и большим вкладом в популяризацию науки.

М.Гретцель "The stunning rise of perovskite solar cells"
28 мая 2020 г. в 19:00 мск. в рамках развития дистанционного образования ФНМ МГУ имени М.В.Ломоносова состоится онлайн лекция всемирно известного ученого, профессора М.Гретцеля (Федеральная политехническая школа Лозанны) "The stunning rise of perovskite solar cells".

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2020 году
коллектив авторов
2 - 5 июня пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Академия – университетам: химия и науки о материалах в эпоху пандемии
Гудилин Е.А., Горбунова Ю.Г., Калмыков С.Н.
Отделение химии и наук о материалах РАН, а также химический факультет и факультет наук о материалах МГУ инициируют реализацию открытого образовательного проекта «Академия – университетам: химия и науки о материалах в эпоху пандемии». В рамках проекта ведущие ученые, члены Российской и международных Академий, видные представители вузовской науки прочитают тематические образовательные лекции по химии, науках о материалах, современным подходам в биологии и медицине. Видеозаписи лекций будут размещены в открытом доступе и могут быть использованы ВУЗами в основной и дополнительной образовательных программах, а также для самоподготовки и мотивации студентов и аспирантов на будущие научные достижения.

2019-nCoV: очередной коронованный убийца?
Анна Петренко
В статье рассказывается о коронавирусе 2019-nCoV — что мы знаем сегодня. А ведущие международные научные издательства предоставляют бесплатный доступ к новым статьям, посвященных изучению коронавируса

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.