Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Туннельный эффект

Ключевые слова:  туннельный эффект

Автор(ы): Коллектив авторов

Опубликовал(а):  Гудилин Евгений Алексеевич

10 декабря 2017

Приглашаем к участию в XII Всероссийской олимпиаде про нанотехнологиям!

Туннельным эффектом называют преодоление частицей потенциального барьера в случае, когда её энергия (остающаяся при этом неизменной) меньше высоты барьера. Это явление имеет квантовую природу, так как подразумевает собой прохождение частицы сквозь область пространства, пребывание в которой запрещено классической механикой, например, перескок электрона через тонкий слой диэлектрика, разделяющий два проводника.

В классической физике частица не может оказаться в области такого барьера и тем более пройти сквозь него, так как это нарушает закон сохранения энергии. Однако в квантовой физике ситуация принципиально другая. Квантовая частица не движется по какой-либо определенной траектории. Состояние частицы (ее координата и импульс) описывается соответствующей волновой функцией Y, физический смысл которой определяется следующим образом: вероятность нахождения частицы в элементарном объеме DV равна |Y|2DV. Чтобы вычислить вероятность нахождения частицы за потенциальным барьером, необходимо решить уравнение Шрёдингера с учетом непрерывности волновой функции на стенках барьера (рис.1). С увеличением высоты барьера, а также массы частицы, вероятность туннельного эффекта экспоненциально падает, т.е. чем больше квантовый медвежонок Винни-Пух ест, тем меньше у него шансов куда-либо туннелировать.

Для качественного понимания туннельного эффекта достаточно лишь вспомнить один из основополагающих законов квантовой физики – принцип неопределенности Гейзенберга, который гласит, что невозможно точно определить положение и импульс частицы одновременно. Таким образом, малая неопределенность координаты частицы (с точностью до толщины барьера) приводит к неопределенности ее импульса, а следовательно, и кинетической энергии. Соответственно, появляется некоторая вероятность прохождения частицы сквозь потенциальный барьер.

Туннельный эффект широко встречается в природе, а также успешно используется в современных технологиях. Например, при альфа-распаде радиоактивных ядер тяжелое ядро излучает альфа-частицу, состоящую из двух протонов и двух нейтронов. Частице при отрыве от ядра приходится преодолевать барьер внутриядерных связей. Происходит туннелирование, и мы наблюдаем спонтанное альфа-излучение. Другой важный пример туннельного эффекта – процесс термоядерного синтеза, питающий энергией звезды. Сильное кулоновское отталкивание препятствует сближению ядер дейтерия, однако под воздействием высоких температур и давлений это все же происходит, и начинает действовать туннельный эффект. В результате происходит термоядерный синтез и звезды светят.

Наконец, нельзя не упомянуть сканирующий туннельный микроскоп. Принцип его работы основан на измерении туннельного тока, который возникает между поверхностью исследуемого образца и тонкой иглой, расположенной на сверхмалом расстоянии. Когда игла находится непосредственно над атомом, сила туннельного тока возрастает. Таким образом, при помощи туннельного микроскопа удается буквально ощупывать образцы и исследовать атомную структуру поверхности.

Другими примерами реализации на практике туннельного эффекта являются сверхпроводящий медицинский томограф со сверхчувствительным датчиком магнитных полей, SQUID –магнетометр и считывающие головки приборов, использующих эффект туннельного магнетосопротивления.

Литература

Н.Б.Делоне, Туннельный эффект, Соросовский образовательный журнал, т. 6, № 1, 2000.

С.Трейман, Этот странный квантовый мир, НИЦ «Регулярная и хаотическая динамика», Ижевск, 2002.


В статье использованы материалы: Олимпиада


Средний балл: 10.0 (голосов 1)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Наногалактика
Наногалактика

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Британский крест китайских ученых: элемент памяти на новом типе доменной структуры в FeRh.Волокна из углеродных нанотрубок помогут сердцу. Фуллерены для стабилизации азотного топлива. International Quantum Complex Matter Conference 2020 (QCM2020).

На ВДНХ в Москве отметят День российской науки
День российской науки отпразднуют на ВДНХ в Москве 8 и 9 февраля. Инновационно-образовательный комплекс «Техноград» на ВДНХ приглашает москвичей и гостей столицы отпраздновать «День науки». Гостей ожидают бесплатные мастер-классы, знакомство с инновациями в биомедицине и достижениями нейронаук, занимательные уроки и многое другое.

8 февраля - День Российской науки
День российской науки отмечается 8 февраля

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2020 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Да пребудет с вами сила плазмонов!
А.А.Семенова, Э.Н.Никельшпарг, Е.А.Гудилин, Н.А.Браже
Ученые Московского университета приблизились к решению проблем современной медицинской диагностики с использованием единичных клеток и их органелл путем разработки новых неинвазивных оптических методов анализа.

Юрий Добровольский: «Через 50 лет вся энергия будет вырабатываться биоорганизмами»
Андрей Бабицкий, Юрий Добровольский
Главный редактор ПостНауки Андрей Бабицкий побеседовал с химиком Юрием Добровольским о науке о материалах, будущем энергетики и новых аккумуляторах

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.