Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Туннельный эффект

Ключевые слова:  туннельный эффект

Автор(ы): Коллектив авторов

Опубликовал(а):  Гудилин Евгений Алексеевич

10 декабря 2017

Приглашаем к участию в XII Всероссийской олимпиаде про нанотехнологиям!

Туннельным эффектом называют преодоление частицей потенциального барьера в случае, когда её энергия (остающаяся при этом неизменной) меньше высоты барьера. Это явление имеет квантовую природу, так как подразумевает собой прохождение частицы сквозь область пространства, пребывание в которой запрещено классической механикой, например, перескок электрона через тонкий слой диэлектрика, разделяющий два проводника.

В классической физике частица не может оказаться в области такого барьера и тем более пройти сквозь него, так как это нарушает закон сохранения энергии. Однако в квантовой физике ситуация принципиально другая. Квантовая частица не движется по какой-либо определенной траектории. Состояние частицы (ее координата и импульс) описывается соответствующей волновой функцией Y, физический смысл которой определяется следующим образом: вероятность нахождения частицы в элементарном объеме DV равна |Y|2DV. Чтобы вычислить вероятность нахождения частицы за потенциальным барьером, необходимо решить уравнение Шрёдингера с учетом непрерывности волновой функции на стенках барьера (рис.1). С увеличением высоты барьера, а также массы частицы, вероятность туннельного эффекта экспоненциально падает, т.е. чем больше квантовый медвежонок Винни-Пух ест, тем меньше у него шансов куда-либо туннелировать.

Для качественного понимания туннельного эффекта достаточно лишь вспомнить один из основополагающих законов квантовой физики – принцип неопределенности Гейзенберга, который гласит, что невозможно точно определить положение и импульс частицы одновременно. Таким образом, малая неопределенность координаты частицы (с точностью до толщины барьера) приводит к неопределенности ее импульса, а следовательно, и кинетической энергии. Соответственно, появляется некоторая вероятность прохождения частицы сквозь потенциальный барьер.

Туннельный эффект широко встречается в природе, а также успешно используется в современных технологиях. Например, при альфа-распаде радиоактивных ядер тяжелое ядро излучает альфа-частицу, состоящую из двух протонов и двух нейтронов. Частице при отрыве от ядра приходится преодолевать барьер внутриядерных связей. Происходит туннелирование, и мы наблюдаем спонтанное альфа-излучение. Другой важный пример туннельного эффекта – процесс термоядерного синтеза, питающий энергией звезды. Сильное кулоновское отталкивание препятствует сближению ядер дейтерия, однако под воздействием высоких температур и давлений это все же происходит, и начинает действовать туннельный эффект. В результате происходит термоядерный синтез и звезды светят.

Наконец, нельзя не упомянуть сканирующий туннельный микроскоп. Принцип его работы основан на измерении туннельного тока, который возникает между поверхностью исследуемого образца и тонкой иглой, расположенной на сверхмалом расстоянии. Когда игла находится непосредственно над атомом, сила туннельного тока возрастает. Таким образом, при помощи туннельного микроскопа удается буквально ощупывать образцы и исследовать атомную структуру поверхности.

Другими примерами реализации на практике туннельного эффекта являются сверхпроводящий медицинский томограф со сверхчувствительным датчиком магнитных полей, SQUID –магнетометр и считывающие головки приборов, использующих эффект туннельного магнетосопротивления.

Литература

Н.Б.Делоне, Туннельный эффект, Соросовский образовательный журнал, т. 6, № 1, 2000.

С.Трейман, Этот странный квантовый мир, НИЦ «Регулярная и хаотическая динамика», Ижевск, 2002.


В статье использованы материалы: Олимпиада


Средний балл: 10.0 (голосов 1)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Кристаллы полученные изотермическим испарением растворителя
Кристаллы полученные изотермическим испарением растворителя

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Нитрид-борные нанокомпозиты для доставки лекарств. 2D наноматериалы помогут создать портативную искусственную почку. Обзор по cтрейнтронике. Доставка лекарств с помощью борнитридных фуллеренов. Речные фуллерены. Научный хит-парад 2018 по версии APS

Лекция Константина Севернинова: от бактериального иммунитета к геномному редактированию
20 декабря состоялась лекция молекулярного биолога, профессора Константина Северинова.
На лекции обсуждались вопросы: какова природа генетических болезней, и сможем ли мы лечить их в ближайшем будущем; что такое система CRISPR-Cas, и как бактерии используют её для борьбы с вирусами, и как изучение этого необычного механизма привело к созданию мощного инструмента геномного редактирования.

Наносистемы: физика, химия, математика (2018, том 9, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume9/9-6
Там же можно скачать номер журнала целиком.

Почувствовать живое...
Е.А.Гудилин, А.А.Семенова, Н.А.Браже
Неразрушающее исследование живых клеток и клеточных структур является в настоящее время важным направлением научных изысканий, которые во многих зарубежных и российских научных группах направлены на достижение вполне прагматической цели – разработку новых принципов биомедицинской диагностики и эффективных подходов в нарождающейся персональной медицине.

Российская газета: Перевернуть пирамиду. Президент РАН: как повысить наши шансы на Нобеля
Юрий Медведев
Почему Россия по числу Нобелей отстает от ведущих стран мира, уступая, например, даже маленькой Швейцарии? Замалчиваются ли достижения отечественных ученых? Почему без привлечения в науку российского бизнеса мы не сможем успешно конкурировать в борьбе за престижную научную премию? Об этом корреспондент "РГ" беседует с президентом РАН Александром Сергеевым, который побывал в Стокгольме на вручении Нобелевских премий и поделился своими впечатлениями.

Эффект лотоса
Никельшпарг Эвелина Ильинична
Кратко и поэтично об одном из самых известных эффектов, который так любят школьники и участники наноолимпиады - об эффекте лотоса...

Инновационные системы: достижения и проблемы
Олег Фиговский, Валерий Гумаров

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.