Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Пресс - служба МГУ: В МГУ разработали новую стратегию получения перовскитных солнечных ячеек

Ключевые слова:  гибридный перовскит, полииодиды, солнечная энергетика

Опубликовал(а):  Гудилин Евгений Алексеевич

18 мая 2017

По сообщениям Пресс-службы МГУ, сотрудники лаборатории новых материалов для солнечной энергетики факультета наук о материалах при участии коллег с химического факультета МГУ разработали новый метод, позволяющий получать высококристалличные пленки органо-неорганических перовскитов для солнечных ячеек. Результаты работы опубликованы в журнале Materials Horizons.

Ранее мы уже рассказывали об исследовании нанонитей гибридных органо-неорганических перовскитов, являющихся перспективными материалами для создания светодиодов, лазеров и фотодетекторов на их основе. Однако наиболее многообещающей областью применения таких материалов является разработка перовскитных солнечных ячеек — фотовольтаических устройств нового поколения, эффективность которых за последние 5 лет возросла в несколько раз и сегодня составляет уже более 22%. Это существенно превышает максимальную эффективность, которую получили для солнечных ячеек на поликристаллическом кремнии. Эффективность наиболее распространенных солнечных ячеек, производимых в промышленном масштабе, составляет 12-15%.

При контакте двух порошков реагентов при комнатной температуре всего за несколько секунд образуется вязкая темная жидкость — полииодиды метиламмония.

В настоящее время существует два основных подхода к получению таких материалов: нанесение реагентов из газовой фазы и кристаллизация из растворов. Работа по совершенствованию этих методов в последние годы ведется очень интенсивно, но возможности подходов практически исчерпаны. Разработка новых методов создания материалов для фотовольтаики в связи с этим может дать новый рывок в развитии области.

«В ходе исследований мы обнаружили несколько новых соединений — жидких при комнатной температуре полииодидов, обладающих уникальными свойствами. На вид это вязкие жидкости темно‑коричневого цвета с металлическим отблеском, получаемые из двух твердых порошков, которые буквально плавятся на глазах при смешении. Жидкое состояние таких соединений позволяет не использовать опасные растворители, а их химический состав способствует образованию необходимого перовскита при контакте с пленкой металлического свинца или его соединениями. В результате химической реакции между пленкой свинца и жидкими полииодидами образуется пленка перовскита, состоящая из крупных взаимопроникающих кристаллов», — рассказал кандидат химических наук Алексей Тарасов, заведующий лабораторией новых материалов и руководитель исследования.

Пленки из жидких полииодидов наносят на свинец с помощью так называемого метода спин-коатинга. Для этого стеклянная подложка, на которую с помощью термического напыления нанесен слой свинца, закрепляется на вращающемся стержне и приводится во вращение.

Микрофотографии пленок перовскита с различной морфологией, полученные с помощью разработанного метода.

На вращающуюся подложку накапывается полииодид, после этого избыток непрореагировавшего полииодида смывается растворителем изопропанолом. В результате получаются пленки перовскита толщиной от 200 до 700 нм. Их устойчивость определяется в первую очередь самим материалом, из которого они состоят. Сотрудники факультета наук о материалах продемонстрировали возможность варьирования состава наносимых полииодидов, и, как следствие, можно будет подобрать состав, обладающий оптимальной стабильностью.

«Пленка из перовскитов проявляет интенсивную фотолюминесценцию и большие времена жизни носителей зарядов, что обеспечивает хорошие функциональные свойства. В работе мы также продемонстрировали возможность получать пленки перовскитов различного состава при использовании смесей полииодидов. Исследования в области перовскитной фотовольтаики наша группа ведет при поддержке гранта ФЦП Минобрнауки РФ совместно с индустриальным партнером, компанией "Евросибэнерго"», — прокомментировал Алексей Тарасов.

В настоящее время в лаборатории продолжаются работы по исследованию свойств обнаруженных полииодидов и разработке на их основе технологии получения солнечных ячеек с высокой эффективностью.

Исследование выполнено совместно с учеными из Федеральной политехнической школы Лозанны.





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Собранные воедино: самоорганизация шариков в кружочки
Собранные воедино: самоорганизация шариков в кружочки

Опубликован механизм знаменитой реакции Зелинского. Получение бензола из ацетилена с помощью автокаталитического каскада на углеродных наночастицах
Российские исследователи показали, что карбеновые центры на зигзагообразных краях графеновых структур могут представлять собой альтернативную платформу для создания эффективных каталитических систем. В частности впервые был представлен механизм реакции Зелинского: тримеризации ацетилена с образованием такого важного продукта как бензол.

Подводятся итоги творческого конкурса «ЮниКвант»
На конкурс «ЮниКвант» для участия в профильной смене по био- и нанотехнологиям в ВДЦ «Океан» поступило более 100 заявок.

Круги на нано-полях
Тысяча SEM-микрофотографий иллюстрируют эффект упорядочивания наночастиц палладия на углеродной подложке. В журнале Scientific Data опубликована новая статья Ananikovlab.ru, в которой визуализируется и обсуждается этот уникальный эффект упорядочения.

2019-nCoV: очередной коронованный убийца?
Анна Петренко
В статье рассказывается о коронавирусе 2019-nCoV — что мы знаем сегодня. А ведущие международные научные издательства предоставляют бесплатный доступ к новым статьям, посвященных изучению коронавируса

Дышать свободно: как воздухоочистители борются с вирусами
Ростех
В перечне помощников в борьбе с вирусом COVID-2019 – также воздухоочистители. Речь идет о системах очистки воздуха, которые работают на основе фотокатализа. Их фильтры способны справиться с 99% бактерий и вирусов, в том числе могут стать действенным способом борьбы со злополучным COVID-2019.

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2020 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.