Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Схема электрооптического измерения терагерцового поля. Слева красным показан терагерцовый импульс, зелёным — сверхкороткий оптический импульс. Жёлтая пластинка EOX — электрооптический кристалл, в котором происходит взаимодействие импульсов. Остальная часть схемы предназначена для измерения изменившейся поляризации оптического импульса. Изображение из обсуждаемой статьи в Science
Рис. 2. Иллюстрация принципа усреднения сигнала от квантовых флуктуаций при уширении пучка. Если кристалл находится в фокусе импульса, то ширина пучка мала и в него попадает приблизительно одна флуктуация. Если же кристалл отдаляется от фокуса, то ширина пучка увеличивается, и в него попадает много флуктуаций, которые друг друга компенсируют, давая в сумме практически нуль. Изображение из обсуждаемой статьи в Science

Впервые напрямую измерены квантовые флуктуации электромагнитного поля в вакууме

Ключевые слова:  Science, Квантовая механика, Квантовые флуктуации вакуума, периодика

Автор(ы): Артем Коржиманов

Опубликовал(а):  Доронин Федор Александрович

26 октября 2015

Группа учёных из Констанцского университета (Германия) утверждает, что им впервые удалось напрямую измерить квантовые флуктуации вакуума, существующие даже в отсутствие каких-либо полей или частиц. Измерение было проведено электрооптическим методом, применяемым для измерения электрических полей инфракрасного и терагерцового диапазонов. Результаты измерений опубликованыв журнале Science.

Существование квантовых флуктуаций вакуума — одно из главных следствий квантовой природы окружающего нас мира. Оно может быть объяснено на основе принципа неопределённости Гейзенберга. Обычно этот принцип формулируется для положения частицы в пространстве и её скорости (импульса). Принцип гласит, что существует фундаментальное ограничение на возможность одновременного абсолютно точного определения этих характеристик частицы. Чем точнее мы хотим измерить её положение, тем меньше точность нашего знания о её скорости, и наоборот.

Принцип Гейзенберга, однако, применим и для других объектов, в частности, для электромагнитных волн. Согласно одному из следствий этого принципа, не могут быть абсолютно точно одновременно измерены в данной точке пространства электрическое и магнитное поля. Это означает, что даже в абсолютной пустоте, то есть в вакууме, где оба поля должны быть равны нулю, хотя бы одно из них всегда отлично от нуля. С точки зрения измерительной техники, это приводит к существованию шумов, представляющих собой случайным образом флуктуирующие электрическое и магнитное поля.

Теоретические оценки показывают, что величина квантовых флуктуаций электромагнитного поля очень мала и зависит от размеров измерительных приборов и от диапазона частот, в котором ведётся наблюдение. Это, однако, не помешало измерить их косвенными методами. Первыми это сделали в 1947 году Уиллис Лэмб и Роберт Резерфорд (см.: W. E. Lamb Jr., R. C. Retherford, 1947. Fine structure of the Hydrogen atom by a microwave method, правильное теоретическое обоснование чуть позже в том же году дал Ханс Бете, см.: H. A. Bethe, 1947. The Electromagnetic Shift of Energy Levels). Они изучали спектр излучения атома водорода и обнаружили небольшое расщепление двух энергетических уровней, которые должны были бы по стандартной теории иметь одну и ту же энергию. Это расщепление получило название лэмбовский сдвиг. Измеренная величина лэмбовского сдвига с огромной точностью совпала с величиной, предсказанной теоретически, исходя из существования квантовых флуктуаций.

Однако и в эксперименте Лэмба и Резерфорда, и в более поздних экспериментах, например по наблюдению так называемого эффекта Казимира (заключающегося в том, что две параллельно расположенные в абсолютном вакууме проводящие плоскости должны притягиваться друг к другу из-за резонансного взаимодействия с квантовыми флуктуациями), флуктуации измерялись опосредованно — через их влияние на другие объекты.

В свежей работе экспериментаторы из Констанцского университета (Германия) предприняли попытку измерить электрическое поле квантовых флуктуаций напрямую. Осуществить задуманное удалось методом электрооптического стробирования, применяемым для изучения электромагнитных волн инфракрасного и терагерцового диапазона, основанном на применении электрооптического кристалла и сверхкоротких импульсов оптического диапазона.

Метод состоит в пропускании через электрооптический кристалл двух наложенных друг на друга исследуемых импульсов — длинноволнового и оптического (рис. 1). При этом импульсы на входе имеют взаимно перпендикулярные поляризации, и длительность оптического импульса должна быть значительно меньше периода длинноволнового излучения. В этом случае на длине оптического импульса электрическое поле изучаемого импульса остаётся практически постоянным.

В электрооптическом кристалле при наличии внешнего электрического поля происходит анизотропное изменение показателя преломления. То есть кристалл становится двулучепреломляющим для оптического излучения, поэтому его поляризация в кристалле начинает изменяться, превращаясь из линейной в эллиптическую. При этом чем сильнее электрическое поле исследуемого импульса в той точке, где располагался оптический импульс, тем больше и величина эллиптичности вышедшего из кристалла оптического импульса. Поэтому, определяя эллиптичность, можно измерить величину электрического поля.

Измерение эллиптичности проводится стандартным оптическим методом: излучение пропускается сначала через четвертьволновую пластинку, которая меняет его поляризацию на практически круговую, а затем через двулучепреломляющий кристалл, в котором происходит пространственное разделение импульса на два со взаимно перпендикулярными поляризациями. Эти два луча попадают на два фотодиода, между которыми измеряется разность генерируемого фототока. По этой разности и восстанавливается эллиптичность прошедшего оптического импульса.

Подчеркнём, что успешность измерения электрических полей этим методом напрямую зависит от того, насколько короток оптический импульс. В работе использовался импульс инфракрасного света длительностью всего 5,8 фемтосекунд (1 фемтосекунда = 10−15 секунды), это составило всего 1,5 периода световой волны. Этим импульсом измерялись поля с периодом от 8 до 25 фемтосекунд (длиной волны от 2,5 до 7,5 микрон).

Идея работы заключается в том, что даже в отсутствие длинноволнового излучения квантовые флуктуации электрического поля будут приводить к изменению поляризации оптического импульса, которое можно измерить и тем самым определить величину флуктуирующего электрического поля. Квантовые флуктуации, однако, носят случайный характер и проявляют себя в виде шумов. Это означает, что если повторять эксперимент много раз, то измеренное поле будет случайным образом меняться. В среднем оно будет равно нулю, но можно измерить его среднеквадратичное отклонение от нуля.

Проблема заключается в том, что квантовые флуктуации являются не единственным источником шума. Более того, есть более сильные его источники. В частности, в обсуждаемой работе намного больший вклад в шум давал так называемый дробовой шум: из-за квантовой природы света количество регистрируемых фотонов оптического импульса случайным образом меняется от выстрела к выстрелу. Оценки показывают, что в условиях обсуждаемого эксперимента дробовой шум приводил в среднем к отклонениям измеренного поля на величину около 65 В/см, в то время как квантовые флуктуации ожидалась в среднем на уровне 20 В/см.

Чтобы побороть эту проблему, в эксперименте сравнивались между собой случаи, когда присутствует только дробовой шум, и когда присутствует также и шум от квантовых флуктуаций. При этом сравнивалось среднеквадратичное отклонение измеренного поля от нулевого значения. По оценкам, разница между двумя случаями должна была составить величину всего лишь около 4,7%.

Чтобы реализовать случай, когда шум от квантовых флуктуаций отсутствует, экспериментаторы использовали увеличение размера оптического импульса на основе двух различных техник. В первой из них они удлиняли оптический импульс почти в 20 раз, до 100 фемтосекунд, а во втором — смещали электрооптический кристалл из точки фокуса так, что в месте расположения кристалла значительно возрастала ширина импульса (рис. 2). В результате в обоих подходах импульс становился значительно больше размера измеряемых флуктуаций, и суммарный вклад от них равнялся практически нулю (конечно, в вакууме присутствуют флуктуации любого размера, но можно показать, что чем больше их размер, тем меньший вклад они дадут в измеряемый сигнал).

Оба метода показали, что среднеквадратичное отклонение измеренного поля от нулевого значения, действительно, уменьшается, если шум от квантовых флуктуаций удаляется, и измеренное уменьшение в обоих подходах составило величину около 4%, что достаточно хорошо совпадает с теоретическими оценками.

В заключение отметим, что, хотя результат измерений совпал для двух подходов, использованный метод не лишён недостатков, которые могут поставить корректность эксперимента под вопрос. В частности, не принимавший участия в эксперименте физик Стив Ламоро (Steve Lamoreaux) из Йельского университета отметил, что измеренные флуктуации могли быть вызваны тепловыми шумами в самом электрооптическом кристалле, в котором проводились измерения. Ламоро известен тем, что в 1997 году одним из первых с достаточно высокой точностью измерил упоминавшийся выше эффект Казимира.

Как бы то ни было, опубликованная работа должна дать толчок к новым экспериментальным попыткам измерить квантовые флуктуации напрямую. Проведённые с большей аккуратностью, они покажут, действительно ли учёные из Констанцского университета зарегистрировали квантовые флуктуации или измеренный ими сигнал имеет более прозаичное происхождение.

Источник: C. Riek et al. Direct sampling of electric-field vacuum fluctuations // Science. 2015. Published Online 1 October. DOI: 10.1126/science.aac9788.


В статье использованы материалы: Элементы




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Грандканьон
Грандканьон

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.