Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Кристалл из печи

Ключевые слова:  конкурс, кристаллы, лучшие работы, Мастерские инноваций, Моя лаборатория, Олимпиада, периодика, ФИОП РОСНАНО, ЮУрГУ

Автор(ы): Грибова Дарина Денисовна

Опубликовал(а):  Гольдт Илья

18 марта 2015

Программа «Мастерские инноваций» ФИОП РОСНАНО и МГУ имени М.В.Ломоносова подвели итоги конкурса «Моя лаборатория». Мы с удовольствием публикуем лучшие работы.

Выращивать кристаллы для светодиодов – это почти как растить, скажем, редис, только вместо грядки будет перчаточный бокс, вместо свежего воздуха – инертный газ аргон, и Нобелевскую премию за редис дадут вряд ли. Ученый из Челябинска Дмитрий Жеребцов рассказывает, зачем нужен альтернативный источник света и в каких условиях для него растут кристаллы.


Центр «Нанотехнологии» находится в правом крыле ЮУрГУ

На проспекте Ленина в Челябинске над остальными зданиями возвышается Южно-Уральский государственный университет, похожий на уменьшенную копию столичного МГУ. При ЮУрГУ функционирует научно-образовательный центр «Нанотехнологии»; его сотрудник Дмитрий Жеребцов ведет меня в лаборатории длинными лестницами и коридорами и останавливается у «теплицы» для кристаллов – перчаточного бокса.

Представьте себе огромную витрину с четырьмя ручищами-перчатками из плотной резины, а внутри – нагромождение из приборов, контейнеров, проводов и инструментов. Однако беспорядок здесь только на первый взгляд. Каждый предмет необходим для загрузки, выгрузки и осмотра образцов, потому что внести что бы то ни было внутрь бокса непросто: здесь работают с материалами, чувствительными к воздуху. Этим и объясняется практически абсолютная инертна атмосфера внутри – заполняющий бокс аргон не поддерживает реакций. Человек тоже не смог бы работать в аргоне, потому что, дыша им, он бы очень скоро задохнулся от нехватки кислорода.

В перчаточном боксе одновременно могут работать двое

Дмитрий Жеребцов уверенно продевает руки в перчатки и оказывается по плечи внутри бокса – без опасности для жизни. «Сейчас я держу в руках жидкий сплав металлического калия и металлического натрия, и если вынести его на воздух, будет яркий оранжево-фиолетовый фейерверк из-за его самовозгорания», – объясняет ученый. Но это лишь один из примеров используемых в экспериментах материалов: монокристалл нитрида галлия должен расти в расплаве галлия, натрия, лития и углерода. Жаростойкий контейнер с этой смесью позже загружается в центр печи высокого давления, где кристалл растет.

Дмитрий показывает сплав металлического калия и металлического натрия: такое соединение может спокойно существовать только в инертной атмосфере

Выращиваемый Дмитрием и его сотрудниками нитрид галлия (GaN) – основа для белых, синих и ультрафиолетовых светодиодов, лазеров и датчиков. Светодиоды потребляют в пять раз меньше энергии, чем приборы, к которым мы привыкли в быту; энергоэффективность считается их основным преимуществом. Для сравнения: коэффициент полезного действия (КПД) лампочки накаливания – 10%, лампочки дневного света – около 25%, КПД светодиодного источника света достигает 50-60%. Единственный минус в том, что светодиоды стоят в несколько раз дороже обычной лампы, но к этому можно относиться как к долгосрочной инвестиции. Область применения нитрида галлия со временем намного расширится, поскольку его физические свойства во много раз выше, чем у кремния, который используется в современной электронике. Возможно и оборонное применение, например, создание радаров для обнаружения летящих объектов (ракет, самолетов) с расстояния 400 км – этим сейчас занимаются в США.

Плохая новость для нашей обороны в том, что уже около года опыты в боксе не проводятся. Дмитрий Жеребцов продолжает искать возможности государственного или частного финансирования проекта, поскольку необходимо вывести его на новый качественный уровень: найти со временем такой состав и температуру, при которых кристаллы будут получаться крупнее. Пока они совсем крошечные, хотя растут быстро.

Каждый предмет в боксе играет важную роль в процессе эксперимента

«Разрыв между промышленностью и лабораторией существует до тех пор, пока лаборатория далека от выхода на производство. В случае, когда до внедрения остается год-два, люди находят друг друга очень быстро, – уверен ученый. – При должном финансировании мы выйдем на первое товарное производство через три года». Но для привлечения инвестора его команде сначала нужно получить «товарный» кристалл толщиной 5 мм.

Дмитрий Жеребцов в своем кабинете с коллегой, заместителем директора центра «Нанотехнологии» Дамиром Галимовым

Первые печи для исследования высокотемпературных расплавов под давлением были построены в ЮУрГУ еще двадцать лет назад. У себя в кабинете Дмитрий Жеребцов показывает электронную 3D-модель разработанной печи, которая позволит выращивать более мощные, промышленно востребованные монокристаллы нитрида галлия. Печь спроектирована на 10 литров расплава, весит 2 тонны, и даже в помещении с 3х-метровыми потолками ей будет тесно. В планах у ученого – целое семейство таких установок.

Установка такой печи обойдется в 20 миллионов рублей, но выход на промышленный уровень без нее невозможен

По словам Дмитрия, из всех стран мира создание эффективных светодиодов сейчас особенно активно финансируется в Японии: «И японцы на голову нас опережают. Хотя даже они с 2011-го года кормят завтраками – завтра весь мир будет покупать наши монокристаллы, мы всех порвем! Пока не порвали». И все же, в 2014 году именно японские ученые получили Нобелевскую премию по физике за предыдущую разработку 1992 года – изобретение синего светодиода. Никогда не угадаешь, в какой стране прямо сейчас выращивает кристаллы будущий нобелевский лауреат.

Об авторе

Дарина Грибова - журналист-фрилансер, выпускница Санкт-Петербургского государственного университета, Высшей школы журналистики и массовых коммуникаций (Факультет журналистики), по специальности – международная журналистика. Сейчас учится по совместной магистреской программе Санкт-Петербургского государственного университета & Freie Universität Berlin (магистерская программа «Глобальная коммуникация и международная журналистика», 1 курс). online-портфолио

.


В статье использованы материалы: Моя лаборатория


Средний балл: 10.0 (голосов 1)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нанопланета
Нанопланета

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Броуновское движение скирмионов.Растягиваем графен правильно. Красное вино, кофе и чай помогают создавать материалы для гибкой носимой электроники. Металлическая природа кремния и углерода.

К 2023 году российские химики могут занять 4-е место в мире
Эксперты отметили рост числа научных публикаций отечественных ученых и сообщили, что к 2023 году российские химики могут занять 4-е место в мире по публикационной активности.
27 – 29 ноября в рамках юбилейных мероприятий Химического факультета МГУ и торжественной церемонии закрытия Международного года Периодической таблицы химических элементов эксперты подвели итоги 2019 г.

Итоги Менделеевского Года
28 ноября в Фундаментальной библиотеке МГУ состоялось торжественное закрытие Международного года Периодической таблицы химических элементов Д.И.Менделеева.

Константин Жижин, член-корреспондент РАН: «Бор безграничен»
Наталия Лескова
Беседа с К.Ю. Жижиным, заместителем директора Института общей и неорганической химии им. Н.С. Курнакова по научной работе, главным научным сотрудником лаборатории химии легких элементов и кластеров.

Мембраны правят миром
Коллектив авторов, Гудилин Е.А.
Ученые МГУ за счет детального изучения структурных и морфологических характеристик материалов на основе оксида графена и 2D-карбидов титана, а также моделирования их свойств, улучшили методы создания мембран для широкого круга практических применений.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.