Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Структура нового материала под микроскопом
Фото: our Group / Rice University

Графеновые суперконденсаторы для носимой электроники

Ключевые слова:  Графен, Носимая электроника, Полиимид, Суперконденсаторы, Углерод

Опубликовал(а):  Доронин Федор Александрович

13 декабря 2014

Ученые из Техаса предложили недорогую технологию создания из материала на основе графена суперконденсаторов. Последние, по словам авторов, могут найти применение в ряде современных электронных устройств. Результаты своих исследований авторы опубликовали в журнале Nature Communications, а кратко с ними можно ознакомиться на сайте Университета Райса.

Синтез структурированных углеродных материалов с целью хранения информации и управления проводимостью является в настоящее время экономически невыгодным из-за дороговизны материалов и технологий. В своем исследовании специалисты предложили простой и дешевый в сравнении с существующими аналогами подход для создания узоров на пористых графеновых пленках.

После облучения углекислотным лазером, работающим в инфракрасном диапазоне, атомы углерода переходили в другое квантовое состояние, что меняло электропроводящие свойства материала. Лазер удаляет почти весь полимерный материал (полиимид), оставляя слой углерода в виде графеновой пены толщиной до 20 микрометров. Этот слой, как оказалось, можно сформировать в виде узоров, геометрия которого позволяет хранить с помощью нового материала информацию.

Весь процесс протекает на воздухе при комнатной температуре и не требует специальных условий. Как отмечают ученые, лазерный луч разрезает не весь материал полностью, а оставляет часть его прикрепленным к исходной поверхности.

Полученное учеными изображение совы (длина белой линии отвечает одному миллиметру)

Полученное учеными изображение совы (длина белой линии отвечает одному миллиметру) Фото: Tour Group/Rice University

Новый материал, который специалисты называют лазерно-индуцированным графеном, под микроскопом похож на нагромождение связанных хлопьев из пяти-, шести- и семиатомных колец. Обычно пяти- и шестиатомные кольца считаются дефектными, но в данном случае это не так — такие структуры как раз и придают материалу особенные свойства.

В качестве примера ученые получили на полимере изображение совы. Как отмечают специалисты, их технология работает только с двумя типами полимеров. С дешевыми полимиидами — наилучшим образом. Всего ученые провели эксперименты на 15 разных материалах.

Хотя полученный материал не проводит электричество так же хорошо, как медь, в ряде приложений, как отмечают специалисты, этого и не требуется. По их словам, модифицированный полимер может найти применение в качестве суперконденсаторов, которые сочетают в себе быструю зарядку и высокую емкость хранения энергии.

Новая квантовая структура модифицированного графена позволяет особым образом удерживать электроны и снижать общую проводимость графена. Именно это и может послужить основанием для применения нового материала в качестве конденсатора.

Свои выводы ученые подтвердили наблюдениями при помощи электронного микроскопа, а также теоретическими расчетами, выполненными в рамках квантовомеханического метода функционала плотности.

Наилучшие результаты, зафиксированные специалистами на новом материале, говорят о емкости более четырех миллифарад и плотности мощности около девяти милливатов на квадратный сантиметр нового материала. Это сопоставимо с другими суперконденсаторами на основе углерода.

Как отмечают исследователи, новый материал показывает незначительное ухудшение работы после девяти тысяч циклов перезарядки, что является очень хорошим показателем. Ученые считают перспективным использование таких миниатюрных конденсаторов для носимой электроники, в частности для умных часов.


Источник: Лента.ру




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Бутон розы
Бутон розы

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

I МОСКОВСКАЯ ОСЕННЯЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ПЕРОВСКИТНОЙ ФОТОВОЛЬТАИКЕ
14-15 октября 2019 года состоится школа - конференция молодых ученых - I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019).

Золото России на Международной Химической Олимпиаде
30 июля в Париже завершилась 51-я Международная химическая олимпиада. Она была рекордной по числу участников - 309 школьников из более, чем 80 стран. Олимпиада прошла под девизом "Двигаем науку вместе" ("Make the science together"). Сборная России на олимпиаде завоевала 4 золотые медали и в медальном зачете поделила 1-2 место с командой Кореи. Победителями стали Михаил Матвеев (Вологда) и три москвича - Даниил Бардонов, Алексей Шишкин и Никита Чернов.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.