Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Парад нанотехнологий: биология и поверхностные покрытия. Часть 2

Ключевые слова:  RUSNANOPRIZE 2013, Биология, Наноматериалы, Нанотехнологии, периодика, Поверхностная модификация, Статьи

Автор(ы): Денис Андреюк

Опубликовал(а):  Доронин Федор Александрович

29 сентября 2013

Биология и поверхностные покрытия

Продолжаем серию статей с кратким обзором технологий, номинированных на получение международной премии в области нанотехнологий RUSNANOPRIZE 2013. В этой части рассмотрим технологии по двум направлениям:

- наноматериалы с использованием биологических систем;

- модификация поверхностей с использованием нанотехнологий.

Биологические наноматериалы и наносистемы

Если судить по заявкам на премию RUSNANOPRIZE 2013, то прикладные нанотехнологии в биологических системах развиваются в двух крупных направлениях – технологии доставки лекарств (более широко – создания новых лекарственных препаратов) и технологии, в которых биологические системы используются в качестве структурного наноматериала.

К первому направлению можно отнести разработки профессора Лангера (MIT, США) и профессора Фарокзада (Harvard Medical School, США). Они создают комбинированные наночастицы, поверхность которых покрыта биологическими лигандами, т.е. молекулами, специфически распознающими определенные мишени в организме, например, поверхность раковых клеток. Внутренняя часть наночастицы составлена биологически инертным полимером, который связывает действующее вещество, например, доцетаксел, который традиционно используют для химиотерапии рака. Такие частицы могут долгое время циркулировать в крови и задерживаются, а значит, скапливаются, только вокруг клеток опухоли. В результате, концентрация токсичного вещества в опухоли может увеличиваться в десять тысяч раз по сравнению с традиционными методами химиотерапии. На основе этой технологии, в частности, созданы препараты для лечения опухолей мозга, которые с трудом поддаются традиционным методам лечения.

Похожий механизм действия у частиц наноалмазов, которые адсорбируют цитотоксический препарат и накапливаются в тканях опухоли, создавая там повышенную концентрацию действующего агента. Профессор Хо (The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, США) доказал эффективность такого комбинированного препарата для лечения опухолей молочной железы и печени, которые также плохо реагируют на обычную химиотерапию.

Профессор Миркин (Northwestern University, США) разработал и широко внедрил технологию биосенсоров на основе наночастиц золота с пришитыми к ним фрагментами нуклеиновых кислот (так называемые «сферические нуклеиновые кислоты»). Такие биосенсоры работают для диагностики целого ряда заболеваний – там, где необходимо обнаруживать в растворе молекулы ДНК или РНК (например, при распознавании вирусных инфекций). Однако, наиболее впечатляющий успех достигнут в методиках обнаружения определенных последовательностей нуклеотидов непосредственно в живой клетке.

Наночастицы золота с фрагментами НУ, несущие последовательность, комплементарную к искомой, легко проникают в клетку (для организма они не токсичны и не иммуногенны, то есть не вызывают иммунного ответа или аллергии). Интересующая исследователя последовательность нуклеотидов «закрыта» коротким комплементарным фрагментом с флуоресцентной меткой. При этом метка подобрана таким образом, что в связанном состоянии флуоресценция гасится, и метку не видно. Однако в присутствии искомой последовательности РНК в цитоплазме клетки, фрагмент с меткой конкурентно вытесняется с наночастицы, метка попадает в раствор и начинает светиться. В результате описанная методика позволяет идентифицировать определенные мРНК в живой клетке, т.е. фактически видеть процесс считывания определенных генов. Довольно быстро со временем и светящаяся метка, и наночастицы выходят из клетки, а клетка остается живой и функциональной.

Пожалуй, предельным случаем второго направления, когда биологическую систему используют в качестве технологического материала, являются разработки профессора Анжелы Белчер из MIT (США). Проф. Белчер использовала способность вирусных частиц к самосборке. Она создала такую генетическую конструкцию, в которой частицы бактериофага (вирус, поражающий бактерий) «одеваются» в неорганический материал, например, золото или оксид кобальта. Биологический принцип самосборки обеспечивает следующую комбинацию свойств:

- очень высокую степень упорядоченности частиц на молекулярном уровне (все частицы вирусов получаются одинаковыми);

- технологичность процесса – биологические системы можно получать в больших количествах с относительно небольшими затратами (вирусы «сами себя собирают»);

- экологическую безопасность технологии – почти все процессы протекают при комнатной температуре без использования ядовитых и сильнодействующих химикатов.

С использованием технологии вирусной самосборки удалось получить наноматериалы, которые могут выступать компонентами традиционных литий-ионных батарей. Такие батареи будут иметь очень небольшие размеры и сопоставимые с существующими устройствами технические характеристики.

Модификация поверхности

Отчасти тема придания определенных свойств поверхностям с помощью наноструктурированных покрытий уже была затронута в разделе про наномодификаторы для полимеров. Здесь рассмотрим технологии, которые прицельно разрабатывались для изменения поверхностных свойств тех или иных изделий.

Профессор Варанаси (MIT, США) разработал специальную технологию конструирования покрытий для придания им не просто желаемого уровня гидрофобности, но управляемой смачиваемости и управляемой скорости стекания заданной жидкости по заданной поверхности. Подход строится на подборе определенного сочетания твердого пористого носителя, который пропитывается гидрофобной жидкостью и удерживает ее на поверхности материала. Исследователи очень наглядно продемонстрировалипреимущества своей технологии для бутылок с кетчупом, шампуней, зубных паст и других применений, когда в емкостях остаются густые и вязкие жидкости.

Другой подход к использованию гидрофобных свойств поверхности разрабатывает британская компания. Их технология основана на вакуумном нанесении (газофазное осаждение, стимулированное плазмой) специального полимерного покрытия, которое целиком защищает устройство от действия влаги. Технология внедрена и отлажена в промышленном масштабе, например, для бытовых электронных гаджетов. Наносимый слой получается толщиной порядка 100 нанометров, его не видно, он не ощущается и не мешает работать. Но он отталкивает воду и действует как универсальный влагозащитный чехол. В демо-ролике британский ученый роняет свой смартфон в унитаз, потом достает оттуда и радостно отвечает на звонок.

На этом фоне российская технология цинкования стальных поверхностей выглядит не так поэтично. Наши ученые разработали и успешно опробовали в промышленном использовании метод, позволяющий «пропитывать» поверхностный слой стальных изделий цинком с помощью термодиффузии. Уникальность разработки заключается в особых свойствах нанопорошка – металлические частицы имеют размеры меньше 100 нм и покрыты слоем пористого оксида. Это, во-первых, позволяет покрывать порошком даже труднодоступные поверхности деталей и, во-вторых, обеспечивает высокую концентрацию паров цинка на поверхности стали. Технология внедрена на Первоуральском новотрубном заводе (группа ЧТПЗ) при производстве насосно-компрессорных труб. Термодиффузионное цинковое покрытие выполняет там роль герметизирующего уплотнителя в соединительных муфтах и доказало свою высокую эффективность в опытной эксплуатации у целого ряда нефтяных компаний.


В статье использованы материалы: НОР




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Гнездо с яйцами
Гнездо с яйцами

12 конференция по нанотоксикологии в Зальцбурге
9, 10 и 11 - 13 сентября 2019 года в Зальцбурге (Австрия) состоится уникальное событие - первый международный научный форум для молодых ученых (International Young Scientist Forum) в рамках 12 международной конференции по нанотоксикологии, а также сама ежегодная конференция. Конференцию посетит команда РФ, отобранная в рамках конкурса National Student Team Contest XIII Всероссийской олимпиады по нанотехнологиям, а также приглашаются к участию все желающие.

Названы победители всероссийского фотоконкурса «Снимай науку!»
Всероссийский фотоконкурс «Снимай науку!» проходил со 2 апреля по 31 мая 2019 года. В нем приняли участие более 400 авторов. Из 2182 фотографий экспертная комиссия выбрала 16 лучших работ, которые войдут в экспозицию фотовыставки «Снимай науку!» в парке искусств «Музеон» (Москва).

Фотоконкурс для школьников и учителей
Факультет Наук о Материалах Московского государственного университета имени М.В.Ломоносова и Фонд Инфраструктурных и Образовательных Программ (группа РОСНАНО) объявляют о проведении Фотоконкурса на лучшую работу в области технопредпринимательства и проектной деятельности школьников.

Новые гибридные перовскитоподобные материалы для солнечной энергетики
Тарасов Алексей Борисович, Постнаука
Как сохранить энергию солнца или ветра? Как может измениться стационарная энергетика в будущем? В проекте «Мир вещей. Из чего сделано будущее» совместно с Фондом инфраструктурных и образовательных программ (группа РОСНАНО) Постнаука рассказывает о последних открытиях и перспективных достижениях науки о материалах.

Материалы к защитам квалификационных работ бакалавров на ФНМ МГУ в 2019 году
Коллектив авторов
4-7 июня 2019 г. (11-00) в аудитории 221 корпуса Б пройдут защиты ВКР бакалавров ФНМ МГУ.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2019 году
Семенова Анна Александровна
21-24 мая 2019 года в лабораторном корпусе Б пройдут защиты магистерских диссертаций выпускниками ФНМ МГУ.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.