Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Топологический изолятор Bi2Se3. Большая константа спин-орбитального взаимодействия висмута создает внутреннее магнитное поле, на поверхности возникает круговой ток, которого не возникает в объеме.
Оптический спектр пропускания для обычного прозрачного проводящего тонкопленочного оксида.
a, Фотография прозрачной пленки Bi2Se3 на слюдяной подложке, демонстрирующая гибкость. b, TEM изображение пленки Bi2Se3. c, Изображение HRTEM красной точки на b, показывающее его кристаллическую структуру, и d, Изображение HRTEM сложенного края Bi2Se3, показывающее его слоистую структуру.

Проводники: битва за прозрачность

Ключевые слова:  оптоэлектроника, проводники

Опубликовал(а):  Уточникова Валентина Владимировна

04 апреля 2012

Человеку, далекому от оптоэлектроники, интуитивно кажется, что оптическая прозрачность и проводимость – свойства не совместимые: прозрачные материалы – это, например, оконное стекло, проводящие – это металлы, и у них ничего общего. Те, кто знаком с устройством дисплеев и солнечных батарей, тем не менее знают, что прозрачные электроды существуют, и спрос на эти материалы быстро растет. Самым распространенным среди таких материалов на сегодняшний день, вне всякого сомнения, является легированный оксидом олова In2O3 (ITO), первое сообщение о котором появилось в 1954 году и который до сих пор не собирается сдавать своих позиций из-за его низкого удельного сопротивления, возможности травления и легкого масштабирования. Тем не менее, в последнее время появился ряд вопросов к ITO, главный из которых в том, что поставки индия оценены как «критические» уже несколькими агентствами. Например, несмотря на то, что одним из основных преимуществ органических светодиодов по сравнению с неорганическими является их более низкая цена, стоимость прозрачного анода из ITO практически сводит это преимущество на нет. Однако еще более важным является другое: с развитием органической оптоэлектроники все возрастает спрос на гибкие прозрачные проводники, которые могут быть получены на пластиковых подложках.

В качестве альтернативы ITO были изучены и другие оксидные материалы, такие, как легированные ZnO и TiO2, и так как оба этих материала хорошо известны как прозрачные проводники еще с 1950 года, развитие их промышленного производства сегодня является основным направлением исследования. Недавно были опубликованы концепты «прозрачных проводящих материалов нового поколения», например, 12CaO·7Al2O3 с уникальной электронной структурой, кубический SrGeO3, графеновые материалы, в которых электроны проводимости ведут себя как частицы Дирака.

Еще одним новым классом материалов с уникальной электронной природой являются топологические изоляторы (ТИ). Хотя в виде порошков эти материалы являются диэлектриками с большой шириной запрещенной зоны, их поверхность имеет металлический характер с нулевой запрещенной зоной. Дно зоны проводимости и потолок валентной зоны связаны линейными зонами (конусом Дирака). Большинство из этих соединений представляют собой слоистые соединения висмута. Из-за большой константы спин-орбитального взаимодействия висмута появляется возможность создания локального магнитного поля без использования внешнего магнитного поля. В объемном материале ток все равно не появляется, зато он появляется на поверхности.

Поверхностные электроны ТИ ведут себя как безмассовые электроны Дирака, как в графене, а на поверхности ТИ образуется спин-поляризованный ток без использования внешнего магнитного поля.

По данным Пенга с сотрудниками, опубликованным в Nature Chemistry, ТИ на основе Bi2Se3 обладают сопротивлением 330 Ом/sq (3,3×103 S/см), что сопоставимо с проводимостью коммерчески доступного ITO. Их оптическая прозрачность для видимого излучения пока оставляет желать лучшего и составляет ~50%, зато прозрачность в ближней инфракрасной области превышает 85%.

Пенг также указывает, что гибкость тонких пленок Bi23 выше, чем у пленок ITO как по минимальной кривизне разрыва, так и по устойчивости к последовательному циклическому изгибанию. Его устойчивость к воздействию кислородной плазмы, которая необходима для травления, выше, чем у графена. Печально, что и висмут, и селен ядовиты и потому не пригодны для промышленного применения, но ученые предсказывают рост числа прозрачных проводников, относящихся к этому классу.




Комментарии
Палии Наталия Алексеевна, 04 апреля 2012 12:59 
ученые предсказывают рост числа прозрачных проводников- а в будущем, которое еще не наступило
"Печально, что ... , и селен ядовиты ...", а почему селен находит применение в медицине? Или это не совсем так или так не совсем?
Палии Наталия Алексеевна, 07 апреля 2012 09:38 
почему селен находит применение в медицине - потому, что...

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Кристалл иодида свинца
Кристалл иодида свинца

Периодическую таблицу Менделеева опять улучшили: наночастицы пятивалентного плутония
Соединения шестивалентного плутония в щелочной среде могут привести к кристаллизации фазы (NH4)PuO2CO3, которая стабильна в течение нескольких месяцев и содержит пятивалентный плутоний. Получение новой фазы пятивалентного плутония фундаментально интересно и открывает новые возможности в разработке более эффективных технологий переработки радиоактивных отходов.

MAPPIC 2019. Второй день
15 октября 2019 года прошел второй день I Московской осенней международной конференции по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

MAPPIC 2019. Первый день
14 октября 2019 года успешно открылась I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.