Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Фундаментальные основы нанотехнологий: 3.нанобиотехнологии и наномедицина

Ключевые слова:  видео, периодика, тьютору

Автор(ы): НОЦ МГУ, ФНМ МГУ

Опубликовал(а):  Гудилин Евгений Алексеевич

15 ноября 2011

Дистанционные образовательные курсы являются современной формой эффективного дополнительного образования и повышения квалификации в области подготовки специалистов для развития перспективных технологий получения функциональных и материалов и наноматериалов. Это одна из развивающихся во всем мире перспективных форм современного образования. Особенно актуальна подобная форма получения знаний в такой междисциплинарной области, как наноматериалы и нанотехнологии. Преимуществами дистанционных курсов является их доступность, гибкость в построении образовательных маршрутов, улучшение эффективности и оперативности процесса взаимодействия со слушателями, экономическая эффективность по сравнению с очной формой, которая, тем не менее, может гармонично сочетаться с дистанционной подготовкой. В области фундаментальных основ нанохимии и наноматериалов подготовлены видеоматериалы Научно-образовательного Центра МГУ по нанотехнологиям:

  • Наномашины в живой клетке (Член-корреспондент РАН, профессор О.А. Донцова). Молекулярные основы живых систем. Представление о живой клетке; строение и функции органелл, принцип самоорганизации живого. Применимость термодинамических и кинетических подходов к процессам, протекающим в живой материи. Бактерии, эукариоты, многоклеточные организмы. Нуклеиновые кислоты: классификация, строение, свойства. Природные наносистемы в хранении, воспроизведении и реализации генетической информации клетки. Системы контроля клеточного деления на уровне организма. Рак как сбой генетической программы клетки.
  • Белки (Профессор Н.Б. Гусев). Структура и функции белков. Функции, выполняемые белками, разнообразие аминокислот, входящих в состав белка. Уровни белковой организации, методы исследования различных уровней организации белковой молекулы. Первичная структура белка, посттрансляционные модификации. Вторичная и третичная структуры белка, проблемы правильного сворачивания белков, болезни, обусловленные неправильной упаковкой белка. Создание искусственных белков с «улучшенной» структурой — важная нанотехнологическая задача. Представление о четвертичной структуре и использование четвертичной структуры для расширения возможностей регуляции и для выполнения механических функций. Белки соединительных тканей (коллаген), механизмы регуляции механической прочности. Белки, формирующие цитоскелет (актин, тубулин, белки промужеточных филаментов), регуляция сборки и разборки элементов цитосклета. Использование белков цитоскелета в качестве «рельсов» для белков-моторов. Миозины, кинезины и динеины как примеры высоко специализированных белков-наномоторов, обеспечивающих внутриклеточный транспорт и биологическую подвижность. Возможности использования белков-моторов для решения некоторых задач нанотехнологии.
  • Основные биологически важные классы соединений (Профессор А.К. Гладилин). Углеводы. Моно-, олиго- и полисахариды. Особенности структуры, способы представления. Возможность использования полисахаридов в качестве нанобиоматериалов. Липиды. Классификация и особенности структуры. Наноструктуры, образуемые липидами. Монослои, мицеллы, липосомы. Перспективность для целей нанотехнологии. Биомембраны. Особенности строения и основные функции.
  • Ферменты (Профессор Н.Л. Клячко). Ферменты — белки с особой функцией катализа. Основные принципы структуры ферментов и особенности ферментативного катализа. Активный центр фермента — самоорганизующаяся и высокоорганизованная функционализированная наночастица и наномашина. Витамины и коферменты, их участие в катализе. Молекулярный дизайн и изменение специфичности ферментов — нанотехнологические задачи и перспективы. Размерные эффекты в нанодиапазоне в белковом катализе. Ферменты в мембранах и мембрано-подобных наноструктурах: регуляция каталитических свойств и олигомерного состава размером матрицы. Биомолекулярные наночастицы; фермент в «рубашке» (оболочка из неорганических и органических молекул) — новый стабильный катализатор. Полиферментные комплексы: реализация принципа «узнавания» в природе и матрицах наноразмеров.
  • Структурный и функциональный аспекты бионанотехнологии (Профессор И.Н. Курочкин). Структурный и функциональный аспекты бионанотехнологии. Разнообразие надмолекулярных структур, образуемых биомолекулами. Принцип самосборки. Использование биоструктур с уникальной геометрией в качестве темплатов для получения наноматериалов и наноструктур (получение нанопроводов, нанотрубок и наностержней из металлов, проводящих полимеров, полупроводников, оксидов и магнитных материалов с использованием ДНК, вирусных частиц и белковых филаментов). Создание двумерных нанопаттернов и трехмерных сверхструктур с использованием ДНК, S-слоев, вирусных частиц и липосом. Искусственные методы самоорганизации в нанодиапазоне. Биофункционализация наноматериалов. Общие методы конъюгации нанообъектов с биомолекулами. Специфическое сродство некоторых биомолекул к нанообъектам.
  • Нанобиоаналитические системы (Профессор И.Н. Курочкин). Нанобиоаналитические системы. История развития современных биоаналитических систем. Биосенсоры. Основные понятия, области применения. «Узнающие» элементы биосенсоров: ферменты, нуклеиновые кислоты, антитела и рецепторы, клеточные органеллы, клетки, органы и ткани. «Детектирующие элементы» биосенсоров. Физические основы регистрации сигнала. Типы биосенсоров: электрохимические, полупроводниковые, микрогравиметрические, оптоволоконные, поверхностные плазмоны, дифракционные решетки, интерферометрические, микро- и наномеханические. Нанобиоаналитические системы на основе наноразмерных полупроводниковых и металлических структур (квантовые точки, молекулярные «пружины», гигантские нелинейные оптические эффекты на поверхности наночастиц металлов — SERS, методы ферментативной и автометаллографии и др.). Применение для целей экологического мониторинга и медико-биологических исследований. Нанобиоаналитические системы на основе сканирующей зондовой микроскопии.
  • Применение нанотехнологий в медицине (академик В.А.Ткачук). Области применения нанотехнологий для развития принципиально новых методов диагностики и лечения болезней человека: использование наноматериалов для адресной доставки лекарственных препаратов и терапевтических генов, визуализации патоморфологических структур, преодоления барьеров биосовместимости и др.
  • Митотехнология (академик РАН В.П. Скулачев). Нанотехнологии открывают несколько новых возможностей для воздействия на живые системы. Одной из таких возможностей является точная адресная доставка биологически-активных веществ внутрь клетки. Митотехнология — это метод, позволяющий доставлять требуемые вещества в клетку с точностью до нескольких нанометров — во внутреннюю мембрану митохондрий. Метод позволяет конструировать лекарственные препараты на основе липофильных катионов. Разработка таких препаратов, а также исследование их физико-химических свойств и биологической активности имеют ряд уникальных особенностей.
  • Биокатализ и нанотехнологии (член-корреспондент РАН С.Д. Варфоломеев). Нанотехнологии открывают новые возможности для использования биокатализаторов. Квантовая химия в исследовании элементарных актов белкового катализа. Биокатализаторы могут работать в кипящей воде; природа термостабильности термофильных микроорганизмов и использование принципов, заложенных природой, в нанобиотехнологиях. Магнитные наночастицы как носители лекарственных средств; ферромагнитные белки и ферменты. Биоэлектрокатализ — ускорение электродных процессов и их использование в разработке нанобиосенсоров. Биокатализ и энергетика — биотопливные элементы. Биоэлектрокатализ — прямая конверсия химической энергии в электричество. Биокатализ и экология — разложение суперэкотоксикантов. Разработка метода регистрации взаимодействий антиген-антитело с использованием ферментативного синтеза полимерных наноструктур. Исследование возможности регистрации продуктов реакции в нанометровом диапазоне (с использованием АСМ).
  • Как работают энергетические молекулярные машины в биологии? (член-корреспондент РАН А.Б. Рубин). Общие биофизические механизмы трансформации энергии в биологических наноразмерных структурах (молекулярных машинах). Механизм переноса электрона, туннельный перенос, электронно-конформационные взаимодействия в активных белковых комплексах, иерархия конформационных изменений в белках (10-12–10-3с). Образование трансмембранного потенциала. АТФ — универсальный энергетический эквивалент живых систем. Работа молекулярных моторов: АТФ-синтетаза, реакционные центры фотосинтеза, ретинальсодержащие фоточувствительные белки (родопсин, бактериородопсин).
  • Молекулярная биология и нанотехнологии (академик РАН А.А. Богданов). Биополимеры — белки и нуклеиновые кислоты, структуру и функции которых изучает молекулярная биология, обладают уникальной способностью самопроизвольно собираться в сложные специфические ассоциаты (такие, как полиферментные и ДНК-белковые комплексы, рибосомы и вирусы). Одно из основных стратегических направлений в конструировании наноматериалов и наноустройств состоит в использовании принципов самосборки и молекулярного узнавания биологических макромолекул. В лекции будут рассмотрены первые примеры успешного применения в нанобиотехнологии и медицине наноконструкций, полученных на основе самособирающихся биологических структур.
  • Нанобиобезопасность (академик РАН М.П. Кирпичников). Физико-химические основы потенциальных рисков при производстве и использовании наноматериалов. Примеры токсического воздействия наноматериалов. Социальные и этические аспекты нанобиобезопасности.
  • Применение вирусных структур как инструментов нанотехнологий (академик И.Г. Атабеков). Обсуждаются принципы молекулярной организации вирусных наночастиц. Рассматриваются нанотехнологии, связанные с применением вирусных наночастиц для получения новых бионеорганических материалов: нанотрубок, нанопроводников, наноэлектродов, наноконтейнеров, для инкапсидации неорганических соединений, магнитных наночастиц и неорганических нанокристал­лов строго контролируемых размеров. Новые материалы создаются при взаимодействии правильно организованных белковых вирусных структур с металлосодержащими неорганическими соединениями. Вирусы могут служить также наноконтейнерами для хранения и доставки в клетки лекарственных препаратов и терапевтических генов. Обсуждаются возможности прямого использования поверхностно модифицированных вирусных наносубструктур в качестве наноинструментов (например, в целях биокатализа или получения живых и вполне безопасных вакцин).

Иллюстративные материалы по нанохимии, самосборке и наноструктурированным поверхностям:

Научно - популярные "видеокниги":

Для чтения и просмотра материалов необходимы:

  • Средней скорости Интернет - соединение (большинство DSL - сервисов по скорости вполне достаточно)
  • Internet - Explorer 6.0 и выше (в принципе, скорость работы с сайтом зависит от наличия на Вашем компьютере антивирусов и настройки браузера), Mozila, Opera не тестировались на полную совместимость, однако, как показывает практика, вполне нормально работают.
  • Флэш - плейер (если он не установлен, сайт предложит его установить, следуйте инструкциям, для установки нужны администраторские привилегии на компьютере)
  • Adobe Acrobat Reader версии 6.0 и выше, если он не установлен, то можно установить бесплатную версию с сайта Adobe, при этом, вероятно, потребуются администраторские привилегии на Вашем компьютере
  • В ряде случаев желательно иметь стандартный медиапроигрыватель, который поставляется в комплекте с операционной системой (в частности, для воспроизведения звуковых и видеофайлов)

Кластер "Видеолекторий":


В статье использованы материалы: НОЦ МГУ


Средний балл: 10.0 (голосов 4)

 


Комментарии
Очень полезная информация.
спосибо за информацию

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Год  Петуха
Год Петуха

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.