Warning: Cannot modify header information - headers already sent by (output started at /nano-data/main/resources.obj.php:5902) in /nano-data/main/resources.obj.php on line 5089
Анодный материал для литиевых батарей: 1D vs 2D
Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Рис. 1 Схематичное изображение наноструктур сравниваемых материалов. В обоих случаях наночастицы Si формируются на нанонитях (a) или наносетях (c) соответственно. В обоих случаях выступают в роли структурных элементов и в качестве проводника электрического тока. Однако, при разрушении нанонити (b) происходит потеря электрического контакта в области за разломом, а в случае наносети (d) механической повреждение лишь уменьшит общую емкость.
Рис.2 TiSi2 нанонити и Si наночастицы были синтезированы методом химического осаждения из газовой фазы. Изображения результирующих наноструктур были получены с помощью сканирующего электронного микроскопа и просвечивающего электронного микроскопа. Как может быть видно из рисунка 2, наименьшие размеры нанонитей (рис.2 a,b) и наносетей (рис.2 с,d) были сравнимы (диаметр 15-20 нм, длина 1-5 мкм). Диаметр кремниевых наночастиц после осаждения составлял 20-30 нм.
Рис. 3. Как показано на рисунке 3а удельная емкость увеличилась от 2670 мА·ч/г до 2700 мА·ч/г в течение 5 циклов в диапазоне напряжений от 0,09 до 2 В (все напряжения используемые в статье берутся относительно Li+/Li). Кулоновская эффективность (КЭ) была 70% на первом цикле и выросла до 95,5% на втором цикле и затем до 97,5% к пятому. Было обнаружено, что важным является производить первые несколько циклов при относительно низкой скорости зарядки (0,6А/г, 0,2С; 1С = 3000 мА/г), иначе было бы получено более быстрое уменьшение емкости и худшие характеристики.
Рис. 4 Сравнение стабильности образцов при различных условиях работы. Емкости образцов из наносетей уменьшались более быстро, когда измерения производились в диапазоне напряжений 0,05 – 2 В и 0,09 – 2 В. Главной причиной более быстрого снижения емкости была более полная интеркаляция в кремний (Si) в этих диапазонах напряжений.
Рис. 5. Электронные микрофотографии TiSi2 нанонитей (a, b) и наноструктур (d, e) после 100 циклов зарядки/разрядки. ПЭМ образцов (a) и (d) приведен на рис. с и f соответственно.
Рис.6 Как видно из рисунка, главной тенденцией является более низкая емкость при более высокой скорости. Эта тенденция согласуется с другими статьями по кремниевым материалам для анодов.

Анодный материал для литиевых батарей: 1D vs 2D

Ключевые слова:  аккумуляторы, анодный материал, литиевая батарея, нанонити, наносети

Опубликовал(а):  Осипова Мария Сергеевна

26 октября 2011

Характеристики современных устройств преобразования и хранения энергии, таких как солнечные батареи, суперконденсаторы и литий-ионные (Li) батареи, тесно связаны с наноструктурой электродов.

Исследователи из США решили сравнить два анодных материала - двумерные (нанонити) и одномерные (наносетки) структуры из TiSi2, облепленные наночастицами кремния (рис.1a,c). Кремний вообще является перспективным и модным анодным материалом (1, 2, 3, 4...). Использование наночастиц кремния обусловлено тем, что пространство между ними позволяет скомпенсировать увеличение объема при зарядке (внедрении ионов лития). В идеальных условиях работы TiSi2 основа не разрушается при зарядке и разрядке, и изменение свойств материала будет определяться деградацией наночастиц кремния. На практике несколько процессов могут привести к разрушению TiSi2 нанонитей и наносетей, а, следовательно, и к разрушению всего электродного материала. Данная работа касается одного из этих механизмов деградации, а именно, механической поломки нанонитей и наносетей (рис.1b,d).

Для изучения стабильности выбранных наноструктур были собраны батарейные ячейки с созданными материалами в качестве анодов. Литиевая (Li) фольга была выбрана в качестве катода для легкого и точного измерения потенциала анода. Исследования показали, что TiSi2 нанонити и наносети реагируют с Li+ по-разному. Наносети показывают заметную интеркаляцию при 0,09 В, а нанонити не показывают существенной реакции при напряжениях выше 0,05 В. Так что следующим шагом необходимо проверить как рабочий диапазон напряжений влияет на стабильность соответствующих наноструктур. Как можно увидеть из рисунка 4, наносетевые образцы показали более высокую емкость, чем образцы из нанонитей.

Для понимания различий в стабильности структур с нанонитями и наносетями были сделаны их СЭМ-микрофотографии после 100 циклов зарядки-разрядки (рис.5). Эти снимки были сравнены со снимками на рис. 2. Процесс интеркаляции/деинтеркаляции в Si характеризуется тем, что кремний из кристаллического состояния или состояния отдельных частиц перешел в аморфное, что сопровождалось увеличением объема. Однако все еще оставались нанонити, чьи превращения кремния (Si) были менее глубокими, как те, что окружены эллипсами (рис.5a,b). Можно предположить, что эти нанонити не прошли столько же циклов, как их соседи вследствие отрыва от токового коллектора после начальных реакций. Действительно, оба конца этих нанонитей были видимыми. На рисунке 5а также можно найти достаточное количество других нанонитей с видимыми обоими концами (указаны стрелочками), указывающими на то, что они были отделены от токового коллектора, и не будут вносить вклад в общую емкость при дальнейших испытаниях. Одинаковое увеличение объема кремниевого покрытия было замечено в образцах с наносетями, а также несколько сломанных наносетей (рис. 5d,e).

Необходимо отметить, что реакция между Li+ и TiSi2-основой главным образом ограничена с помощью кремниевого (Si) покрытия. Этот факт подтверждают снимки (рис. 5с,f), на которых TiSi2 ядро остается неизменным после повторной зарядки/разрядки.

Таким образом, с использованием наногетероструктур становится возможным получить большую емкость и большую мощность в одном материале. Для проверки этого были сравнены исследуемые структуры при различных скоростях зарядки/разрядки. Следуя той же главной тенденции, структуры с нанонитями показали значительно более плохую скоростную характеристику, т.к. емкость упала быстрее при увеличении скорости зарядки.


Источник:




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Природные фотонные кристаллы на крыльях Пяденицы
Природные фотонные кристаллы на крыльях Пяденицы

XIX Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов»
XIX Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов» пройдет 18 - 21 октября 2022 года в Федеральном государственном бюджетном учреждении науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН), г. Москва, в очно-дистанционном формате.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Флуоресцентный шёлк можно получить,подкармливая шелковичных червей углеродными точками. Вопрос выживания кота Шрёдингера. Решение фундаментального вопроса об основном состоянии нитрида бора. Обнаружен новый источник затухания спиновых волн в пленках ферритов гранатов.

DataCon «Искусственный интеллект в химии»
DataCon «Искусственный интеллект в химии» — мероприятие, направленное на обучение школьников и бакалавров принципам машинного обучения и программирования для решения наукоемких задач, который заканчивается решением реальной проблемы.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2022 году
коллектив авторов
24 - 27 мая пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Пятилетка Олимпиады "Нанотехнологии - прорыв в будущее!": что было и что может быть в будущем
Е.А.Гудилин , А.А.Семенова
Уже более 15 лет живет и развивается Всероссийская олимпиада "Нанотехнологии - прорыв в будущее!". За всю историю Олимпиады было предложено много инновационных решений, охват олимпиадой составил более 50 000 участников по всей Российской Федерации и странам ближнего зарубежья. В статье приводятся статистические данные по Олимпиаде и возможные пути ее дальнейшего развития.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.