Warning: Cannot modify header information - headers already sent by (output started at /nano-data/main/resources.obj.php:5902) in /nano-data/main/resources.obj.php on line 5089
Анодный материал для литиевых батарей: 1D vs 2D
Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Рис. 1 Схематичное изображение наноструктур сравниваемых материалов. В обоих случаях наночастицы Si формируются на нанонитях (a) или наносетях (c) соответственно. В обоих случаях выступают в роли структурных элементов и в качестве проводника электрического тока. Однако, при разрушении нанонити (b) происходит потеря электрического контакта в области за разломом, а в случае наносети (d) механической повреждение лишь уменьшит общую емкость.
Рис.2 TiSi2 нанонити и Si наночастицы были синтезированы методом химического осаждения из газовой фазы. Изображения результирующих наноструктур были получены с помощью сканирующего электронного микроскопа и просвечивающего электронного микроскопа. Как может быть видно из рисунка 2, наименьшие размеры нанонитей (рис.2 a,b) и наносетей (рис.2 с,d) были сравнимы (диаметр 15-20 нм, длина 1-5 мкм). Диаметр кремниевых наночастиц после осаждения составлял 20-30 нм.
Рис. 3. Как показано на рисунке 3а удельная емкость увеличилась от 2670 мА·ч/г до 2700 мА·ч/г в течение 5 циклов в диапазоне напряжений от 0,09 до 2 В (все напряжения используемые в статье берутся относительно Li+/Li). Кулоновская эффективность (КЭ) была 70% на первом цикле и выросла до 95,5% на втором цикле и затем до 97,5% к пятому. Было обнаружено, что важным является производить первые несколько циклов при относительно низкой скорости зарядки (0,6А/г, 0,2С; 1С = 3000 мА/г), иначе было бы получено более быстрое уменьшение емкости и худшие характеристики.
Рис. 4 Сравнение стабильности образцов при различных условиях работы. Емкости образцов из наносетей уменьшались более быстро, когда измерения производились в диапазоне напряжений 0,05 – 2 В и 0,09 – 2 В. Главной причиной более быстрого снижения емкости была более полная интеркаляция в кремний (Si) в этих диапазонах напряжений.
Рис. 5. Электронные микрофотографии TiSi2 нанонитей (a, b) и наноструктур (d, e) после 100 циклов зарядки/разрядки. ПЭМ образцов (a) и (d) приведен на рис. с и f соответственно.
Рис.6 Как видно из рисунка, главной тенденцией является более низкая емкость при более высокой скорости. Эта тенденция согласуется с другими статьями по кремниевым материалам для анодов.

Анодный материал для литиевых батарей: 1D vs 2D

Ключевые слова:  аккумуляторы, анодный материал, литиевая батарея, нанонити, наносети

Опубликовал(а):  Осипова Мария Сергеевна

26 октября 2011

Характеристики современных устройств преобразования и хранения энергии, таких как солнечные батареи, суперконденсаторы и литий-ионные (Li) батареи, тесно связаны с наноструктурой электродов.

Исследователи из США решили сравнить два анодных материала - двумерные (нанонити) и одномерные (наносетки) структуры из TiSi2, облепленные наночастицами кремния (рис.1a,c). Кремний вообще является перспективным и модным анодным материалом (1, 2, 3, 4...). Использование наночастиц кремния обусловлено тем, что пространство между ними позволяет скомпенсировать увеличение объема при зарядке (внедрении ионов лития). В идеальных условиях работы TiSi2 основа не разрушается при зарядке и разрядке, и изменение свойств материала будет определяться деградацией наночастиц кремния. На практике несколько процессов могут привести к разрушению TiSi2 нанонитей и наносетей, а, следовательно, и к разрушению всего электродного материала. Данная работа касается одного из этих механизмов деградации, а именно, механической поломки нанонитей и наносетей (рис.1b,d).

Для изучения стабильности выбранных наноструктур были собраны батарейные ячейки с созданными материалами в качестве анодов. Литиевая (Li) фольга была выбрана в качестве катода для легкого и точного измерения потенциала анода. Исследования показали, что TiSi2 нанонити и наносети реагируют с Li+ по-разному. Наносети показывают заметную интеркаляцию при 0,09 В, а нанонити не показывают существенной реакции при напряжениях выше 0,05 В. Так что следующим шагом необходимо проверить как рабочий диапазон напряжений влияет на стабильность соответствующих наноструктур. Как можно увидеть из рисунка 4, наносетевые образцы показали более высокую емкость, чем образцы из нанонитей.

Для понимания различий в стабильности структур с нанонитями и наносетями были сделаны их СЭМ-микрофотографии после 100 циклов зарядки-разрядки (рис.5). Эти снимки были сравнены со снимками на рис. 2. Процесс интеркаляции/деинтеркаляции в Si характеризуется тем, что кремний из кристаллического состояния или состояния отдельных частиц перешел в аморфное, что сопровождалось увеличением объема. Однако все еще оставались нанонити, чьи превращения кремния (Si) были менее глубокими, как те, что окружены эллипсами (рис.5a,b). Можно предположить, что эти нанонити не прошли столько же циклов, как их соседи вследствие отрыва от токового коллектора после начальных реакций. Действительно, оба конца этих нанонитей были видимыми. На рисунке 5а также можно найти достаточное количество других нанонитей с видимыми обоими концами (указаны стрелочками), указывающими на то, что они были отделены от токового коллектора, и не будут вносить вклад в общую емкость при дальнейших испытаниях. Одинаковое увеличение объема кремниевого покрытия было замечено в образцах с наносетями, а также несколько сломанных наносетей (рис. 5d,e).

Необходимо отметить, что реакция между Li+ и TiSi2-основой главным образом ограничена с помощью кремниевого (Si) покрытия. Этот факт подтверждают снимки (рис. 5с,f), на которых TiSi2 ядро остается неизменным после повторной зарядки/разрядки.

Таким образом, с использованием наногетероструктур становится возможным получить большую емкость и большую мощность в одном материале. Для проверки этого были сравнены исследуемые структуры при различных скоростях зарядки/разрядки. Следуя той же главной тенденции, структуры с нанонитями показали значительно более плохую скоростную характеристику, т.к. емкость упала быстрее при увеличении скорости зарядки.


Источник:




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Блистеринг и отслаивание
Блистеринг и отслаивание

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.