Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. Структура дисульфида молибдена.
Рисунок 2. а) Схематическое изображение устройства. b) ВАХ-характеристика транзистора при комнатной температуре (менялось напряжение на обратном затворе). В качестве обратного затвора используется сильно легированный слой SiO2.
Рисунок 3. а) ВАХ-характеристики транзистора (менялось напряжение на верхнем затворе) при разных напряжениях сток/исток. b) ВАХ-характеристики транзистора (менялось напряжение сток/исток). Линейная зависимость при малых напряжениях говорит об омическом поведении золотых контактов.

Полевой транзистор - новые достижения

Ключевые слова:  дисульфид молибдена, полевой транзистор

Опубликовал(а):  Шуваев Сергей Викторович

06 февраля 2011

Многие наноструктуры "примерялись" на роль канала проводимости в полевых транзисторах. В частности, в этой роли прекрасно бы смотрелся графен, благодаря высокой подвижности зарядов. Однако по своей природе графен является полуметаллом, и для применения его в полевых транзисторах необходимо порезать графен на ленты, которые обладают запрещенной зоной. Однако этот процесс технологически довольно сложен, поэтому исследователи были бы счастливы найти некоторую альтернативу. В качестве такой альтернативы мог бы выступать дисульфид молибдена, чья слоистая структура (в каждом слое атом молибдена находится в центре тригональной призмы, образованной атомами серы) сближает его со структурой графита, поэтому возможно получить монослой MoS2 теми же методами, что и в случае графена. Вместе с тем, монослой дисульфида молибдена, обладая сравнимой с графеном подвижностью зарядов, является полупроводником, поэтому его можно использовать как канал проводимости в полевых полупроводниках без дополнительной обработки. Руководствуясь этими соображениями, коллектив ученых из федеральной политехнической школы Лозанны собрал полевой транзистор с изолированным затвором.

Для начала ученые, вооружившись скотчем, отделили монослой MoS2 от объемного материала и перенесли его на подложку сильно легированного SiO2. Методом элекетронно-лучевой литографии были нанесены контакты, после чего были нанесены золотые электроды. Для удаления излишек резиста и уменьшения сопротивления контактов, устройство отожгли при температуре 2000С. Однако подвижность зарядов в полученной структуре оказалась недостаточной (до 10 см2В-1с-1 против 200 см2В-1с-1 у полосок графена), поэтому авторы статьи решили нанести слой оксида гафния (IV), который с одной стороны изолирует затвор, а с другой увеличивает подвижность носителей заряда. И действительно, исследователям удалось значительно увеличить подвижность зарядов (до 217 см2В-1с-1), что объясняется уменьшением резерфордовского рассеяния из-за увеличения диэлектрической проницаемости окружения.

Ученые анализировали устройство, состоящие из двух соединенных транзисторов. При напряжении смещения 500 мВ отношение входящего тока к исходящему превысило 108. Полученные характеристики близки к тем, что были получены для полевых транзисторов, где в качестве канала проводимости использовались полоски графена или кремниевые пленки. Логичным развитие этой работы станет получение целых микросхем с ипользованием описанных здесь транзисторов, что, возможно, станет прорывом в микроэлектронике.


Источник: Nature Nanotechnology



Комментарии
Юный максималист, 06 февраля 2011 20:46 
Ого, это как это они монослой сульфида
молибдена от скотча отдирали (и какая у него
должна быть прочность тогда?!).
А подвижность определяется рассеянием
электронов, и мне неясно, как диоксид гафния на
нее влияет. А в графене она, кстати, на полтора
порядка выше указанного.
Шуваев Сергей Викторович, 06 февраля 2011 21:48 
Ну это для "большого" графена, а для полосок как раз такая же!
Шуваев Сергей Викторович, 06 февраля 2011 21:51 
А с оксидом гафния они сами не очень пока разобрались, поэтому написали: extensive future theoretical work ... would be needed to provide a complete picture.
Там еще не очень понятно, что химически с этой штукой сталось после отжига в аргон-водороде. Из структуры как то высота ступеньки в 6.5 ангст. не очень понятна. Ну и фраза "раньше намеряли столько-то, а мы взяли HfO2 (а охарактеризовали хоть как?) и получилась конфетка", подразумевает попытку объяснения, почему. А так очень на банально грязный эксперимент похоже.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нанопаутина
Нанопаутина

Начинается XV Олимпиада "Нанотехнологии - прорыв в будущее!"
Совсем скоро начнется юбилейная XV Всероссийская Интернет-олимпиада по нанотехнологиям «Нанотехнологии – прорыв в будущее!». Предлагаем ознакомиться с актуальной информацией и расписанием Олимпиады.

В России стартовал самый масштабный научно-популярный фестиваль
РГ: В МГУ дан старт самому масштабному научно-популярному событию в мире - Всероссийскому фестивалю NAUKA 0+. В программе - свыше 10 000 мероприятий: лекции нобелевских лауреатов, вебинары и мастер-классы, виртуальные лабораторные, научные шоу, интерактивные выставки, телемосты с CERN, Международной космической станцией и российской антарктической станцией "Восток", дискуссии о будущем человечества, показы научных фильмов, соревнования роботов, научные бои Science Slam, квизы и квесты, а также первый Виртуальный гипермузей науки.

Нобелевскую премию по химии присудили за метод редактирования генома
РИА Новости: Нобелевскую премию по химии за 2020 год получили Эммануэль Шарпантье и Дженнифер Дудна, разработавшие технологию редактирования генома.

Нобелевская премия за графен, или 10 лет спустя
Алексей Арсенин
О том, как графен повлиял на развитие науки и промышленности и можно ли его назвать материалом будущего — заместитель директора Центра фотоники и двумерных материалов МФТИ, кандидат физико-математических наук Алексей Арсенин

Летние лектории для школьников
ФНМ
Сотрудники Факультета наук о материалах и химического факультета Московского государственного университета имени М.В.Ломоносова участвуют в лекториях двух летних школ, организованных Фондом Инфраструктурных и Образовательных Программ (группа РОСНАНО) - Нанограде и летней школе МФТИ.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.