Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. а) Молекула BETS; b)кристаллическая структура λ-(BETS)2GaCl44 c) образование монослоя (BETS)2–GaCl4 на подложке Ag (111).
Рис. 2. а) Производная dI/dV, подтверждающая на наличие сверхпроводящей щели; b) Уменьшение сверхпроводящей щели с повышением температуры.
Рис. 3. a) Изображение молекулярного монослоя BETS)2–GaCl4, полученное сканирующей тунельной микроскопией. Светло-синие области соответствуют верхнему слою BETS, темно-синие - нижнему слою BETS и GaCl4. b) Сверхпроводящая щель как функция количества молекул, входящих в измеряемый островок.

Сверхпроводимость в четырех молекулах

Ключевые слова:  микроэлектроника, молекулярные монослои, сверхпроводник

Опубликовал(а):  Андрей

02 апреля 2010

При каких размерах вещество сохраняет сверхпроводимость? Внести дополнительную ясность в проблему удалось американским физикам. Недавно опубликованная статье в Nature Nanotechnology содержит любопытные результаты исследования сверхпроводимости в молекулах лямбда-фазы (BETS)2GaCl4, где BETS= бис-этилендитио-тетраселенафульвален (см. рис. 1). Известно, что для GaCl4 в таких молекулах свойственен процесс принятия электронов, что в приводит к требуемым условиям для наблюдения сверхпроводимости.

Монослой молекул приведенного соединения был осажден на подложку (111) Ag в сверхвысоком вакууме при 160оС.

Исследования образования энергетической щели в спектре, проведенные сканирующей тунельной спектроскопией для относительно больших островов размерами больше 100 нм(молекулы, образующие монослои, имели тенденцию собираться в одномерные острова), показали появление сверхпроводимости уже ниже 10 К (рис. 2). Однако с уменьшением размеров островков (и, соотвественно, количества молекул, входящих в измеряемую систему) наблюдалось и уменьшение размера щели в электронном спектре. В частности, для измеряемых островков монослоев размером 50 нм и меньше на рис. 3 приведена зависимость размера щели на уровне Ферми. При этом авторы статьи обращают внимание на минимальный размер молекулярного объекта, в котором им еще удалось обнаружить сверхпроводящее состояние - четыре молекулы (BETS)2GaCl4. Линейный размер такого четырехмолекулярного "островка" - 3.5 нм вдоль молекулярной цепи (вдоль кристаллографического направления а).

Для (BETS)2GaCl4 длина когерентности куперовской пары является анизотропной и составляет 1.6 нм вдоль b-направления и 12.5 нм вдоль а и с направлений. Эти значения совпадают по порядку величины с размерами островка из четырех молекул (BETS)2GaCl4.

Очевидно, что такое открытие нельзя обойти стороной. Статья в который раз доказывает реальности локального изучения сверхпроводимости на наномасштабах. Подобные исследования могут способствовать изготовлению наноразмерных сверхпроводящих устройств и электронных наносхем, основанных на молекулярных материалах.



Источник: Nature Nanotechnology



Комментарии
Пастух Евфграфович, 02 апреля 2010 12:09 
Может быть: степень контраста интерференционных полос когерентности на всей длине куперовской пары является анизотропной, а не просто "длина... является анизотропной"? Или, если есть картинка, и так ясно?
...Подобные исследования могут способствовать изготовлению наноразмерных сверхпроводящих устройств и электронных наносхем, основанных на молекулярных материалах...

И много автор видел микросхем, работающих при температурах ниже 10 К?
Акбашев Андрей Рамирович, 08 апреля 2010 20:31 
Читаем внимательно: "....могут способствовать...". Это означается, что такие исследования дают нам большее понимание происходящего на наноуровне. То, что сегодня только лишь научное открытие, завтра может быть серьездно рассмотрено в плане применения. Я не про 10 К, а про саму концепцию. Для применения чего-либо вначале разбираются с физическими и химическими процессами в материале, а потом уже применяют.

Вы думаете, зря опубликовали в NNano?
Я от себя тут ничего не писал, все можете узнать от авторов статьи

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Золотой знак качества
Золотой знак качества

Светодиодные технологии и оптоэлектроника: магистратура на стыке образования и индустрии
Открыт набор на первую в России индустриальную программу «Светодиодные технологии и оптоэлектроника» Университета ИТМО

Международная онлайн-дискуссия «Квант будущего»
Фонд Росконгресс, Госкорпорация «Росатом», Российский квантовый центр и научно-популярное издание N+1 завершают серию международных онлайн-дискуссий «Квант будущего», где лидеры индустрии и ведущие мировые ученые обсуждают, как квантовые технологии уже изменили наш мир, и с какими вызовами помогут справиться в будущем.
Заключительная дискуссия «Квантовая революция: профессии будущего и трансформация образования» состоится 8 июля в 17:00 по московскому времени.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Супергибридный материал для хранения водорода. Двумерная соль. Существование виртуальных мультиферроиков подтверждено. Чёрные бабочки. Служение науке и немного поэзии.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2020
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 16, 17, 18 и 19 июня 2020 г.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2020 году
коллектив авторов
2 - 5 июня пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.