Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

IV Интернет - олимпиада по нанотехнологиям

Всероссийская Интернет-олимпиада школьников, студентов, аспирантов и молодых ученых в области наносистем, наноматериалов и нанотехнологий "Нанотехнологии - прорыв в Будущее!"

03. Школьники: Физика: 07. «Как работает туннельный микроскоп» (базовая)

формула 1
Рис.1. Схема, иллюстрирующая принцип работы СТМ за счет туннелирования электронов через потенциальный барьер
Рис.2. Схематические изображение атомной структуры участков конца зонда и поверхности образца, между которыми происходит туннелирование при работе СТМ.

Сканирующая зондовая микроскопия является одним из наиболее мощных методов изучения объектов нанотехнологии. Первым из зондовых микроскопов был сканирующий туннельный микроскоп (СТМ). СТМ позволяет получать замечательные изображения отдельных атомов.

Работа СТМ основана на явлении туннелирования электронов через узкий потенциальный барьер в вакууме между металлическим зондом и проводящим образцом во внешнем электрическом поле. Это схематично изображено на рис.1. Эффект туннелирования имеет квантовую природу и заключается в следующем. Существует отличная от нуля вероятность того, что частица (например – электрон) преодолеет потенциальный барьер даже в том случае, когда ее полная энергия (остающаяся при этом неизменной) меньше высоты барьера. В СТМ зонд подводится к поверхности образца на расстояния в несколько ангстрем и образуется туннельно-прозрачный потенциальный барьер, величина которого определяется, в основном, значениями работы выхода электронов из материала зонда и образца. При приложении разности потенциалов между зондом и образцом между ними начинает течь электрический ток, вызванный туннелированием электронов.

Несмотря на то, что эффект туннелирования наблюдается только для квантовых объектов, для анализа работы СТМ часто можно обойтись без квантовой механики. При качественном рассмотрении барьер можно считать прямоугольным (см. рис. 1, на котором форма искажена из-за наличия разности потенциалов между зондом и образцом). При этом эффективная высота барьера φ* равна средней работе выхода материалов зонда φ3 и образца φ0: φ* = (φ3 + φ0)/2. Для оценок и качественных рассуждений часто пользуются следующей упрощенной формулой для плотности туннельного тока jТ, протекающего между двумя проводниками, разделенными вакуумным туннельным барьером (см. формулу 1, в ней j0 – постоянная, зависящая от разности потенциалов между проводниками, h = 6.6×10–34 Дж×с – постоянная Планка, mэ – масса электрона, φ* – эффективная высота туннельного барьера (в энергетических единицах, например в эВ)).

Конечно, на самом деле на атомных масштабах острие зонда СТМ и тот участок образца, который изучается, выглядит совсем не так, как это показано на рис.1. Куда ближе к реальности картина, показанная на рис.2 и учитывающая атомную структуру вещества.

Вопрос 1. Туннельный ток течет через любой атом зонда, рядом с которым расположен атом образца. Острие зонда СТМ на самом деле состоит не из одного атома, а из нескольких. Тем не менее, СТМ очень часто дает возможность разрешать отдельные атомы. Почему так получается (1 балл)?

Часто для того, чтобы зонд СТМ был «хорошим» и позволял увидеть отдельные атомы он просто должен заканчиваться одним атомом (как это показано на рис.2).

Вопрос 2. На основании формулы (1) докажите, что в случае, если высота туннельного барьера 5 эВ, напряжение на зонде 10 мВ, расстояние от конца зонда до поверхности 5 Å а точность измерения туннельного тока 10 %, СТМ позволит увидеть, что несколько атомов на поверхности находятся глубже, чем остальные на 0.5 Å. Предполагается, что зонд СТМ «хороший» (2 балла).

Поскольку в основе работы СТМ лежит явление туннелирования, то в получаемых данных содержится информация не только о рельефе, но и об электронной структуре поверхности образца, например о работе выхода электронов.

Вопрос 3. Предложите способ измерения локальной эффективной высоты туннельного барьера с помощью СТМ (1 балл).

Вопрос 4. Предложите способ измерения с помощью СТМ локальных работ выхода электрона для зонда и образца в том случае (2 балла).

Условия задачи можно скачать в виде файла.

 

Прикрепленные файлы:
phys7.pdf (221.07 Кб.)

 



Наношнуры ZnO
Наношнуры ZnO

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.