Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. На рисунке схематично изображена структура нанокабеля УНТ@TiO2 (а) и трехмерной структуры нанопроводов и углеродной сажи (б).
Рисунок 2. На ТЭМ фотографии высокого разрешения отчетливо различимы составные части нанокабеля УНТ@TiO2.
Рисунок 3. На графиках изображена зависимость напряжения от удельной емкости при плотностях тока 50 (а) и 3000 мАч/г. На графике (с) сравнивается зависимость удельной емкости от плотности тока для оксида титана и УНТ в чистом виде и в составе нанопровода, а также нанопровода УНТ@TiO2. Фон оранжевого и синего цвета соответствуют распределние удельной емоксти, приписываемой УНТ и TiO2 в составе нанопровода. На графике (d) представлена зависимость сохранения емкости от количества циклов зарядки/разрядки.

Синергизм нанотрубок и диоксида титана

Ключевые слова:  аккумуляторы, диоксид титана, нанотрубки

Опубликовал(а):  Шуваев Сергей Викторович

06 февраля 2010

Кажется, что тема электродов для литий-ионных батарей уже настолько досконально исследована, что разработать что-то принципиальное новое в этой области необычайно трудно. Однако, как оказывается, пытливые умы исследователей не перестают поиски материала электрода, который удовлетворяет множеству, зачастую противоречивых, требований, предъявляемых к материалам электрода для литий-ионных батарей. Одной из ключевых проблем является достаточно быстрый транспорт ионов и электронов. Лишь немногие материалы отвечают этому критерию (например, сульфид серебра), в то время, куда большее число материалов обеспечивают быстрый транспорт электронов, демонстрируя при этом недостаточную ионную проводимость (например, углеродные материалы). Казалось бы, выход может быть найден, если использовать нанопористые углеродные структуры, где ионная проводимость обеспечивается жидким электролитом, проникающим сквозь поры, однако низкая проводимость на границе электролит – твердое тело остается камнем предкновения для ученых.

Как известно, УНТ являются хорошим материалом для накопления ионов лития, способным быстро интеркалировать/деинтеркалировать ионы лития при низких напряжениях. Однако из-за реакций, протекающих между УНТ и электролитом, время работы таких электродов невелико. В свою очередь, проводились исследования, в которых в качестве материала электрода выступал TiO2, благодаря своей высокой емкости и химической стабильности. Поэтому международный коллектив исследователей предложил совместить воедино фазы TiO2 и УНТ в виде коаксиального нанокабеля (рис.1). С одной стороны, диоксид титана благоприятствует хранению ионов лития в УНТ, обеспечивая быстрый доступ ионов, с другой, УНТ, будучи хорошим электронным проводником, способствует хранению ионов лития в TiO2. Иными словами, емкость электрода, представляющего собой трехмерную структуру, построенную из коаксиальных нанокабелей (УНТ@TiO2), превосходит емкости электродов из TiO2 и УНТ в отдельности.
Для получения такого коаксиального кабеля исследователи провели контролируемый гидролиз тетрабутоксититана в присутствии УНТ, предварительно обработанного азотной кислотой для улучшения адгезии между УНТ и TiO2 (рис.2). Для того, чтобы доказать свое предположение о том, что электрохимические свойства УНТ@TiO2 превосходят свойства каждого из компонентов, авторами статьи была собрана ячейка, на которой исследовались свойства трех электродов – УНТ, TiO2 УНТ@TiO2 (рис.3). Оказалось, что для композитного электрода удельная емкость, приписываемая TiO2, достигает 212 мАч/г (в пересчете на массу TiO2), что гораздо больше емкости чистого TiO2 (66 мАч/г). В свою очередь, удельная емкость, приписываемая УНТ, также превосходит емкость чистых УНТ, обработанных азотной кислотой (406 мАч/г против 367 мАч/г при плотности тока 50 мА/г). Еще более значительная разница наблюдается при более высоких плотностях тока: при 3000 мА/г УНТ@TiO2 обладает удельной емкостью 244 мАч/г в области напряжений 0.01 и 3В, в котором УНТ без покрытия TiO2 имеет емкость 74 мАч/г, а TiO2 без УНТ вообще не накапливает ионов лития. Эти результаты говорят о том, что покрытие УНТ слоем TiO2 увеличивает его емкость в 3 раза. Еще одной отличительной чертой полученного электрода является долговечность: практически не наблюдается уменьшение удельной емкости спустя 100 циклов зарядки/разрядки при плотности тока 1000 мА/г.


Источник: Chemistry Materials




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Коллоидный цветок (III)
Коллоидный цветок (III)

Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019
Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019. Тезисы доклада Быкова В.А.

Пять медалей завоевали российские школьники на Международной физической олимпиаде
Стали известны итоги 50-й Международной физической олимпиады для школьников, которая проходила в Тель-Авиве (Израиль). Российская сборная завоевала в состязаниях 4 золотые и одну серебряную медаль.

Поступление в совместный российско-китайский Университет МГУ-ППИ в Шэньчжэне
В июле 2019 года в МГУ имени М.В. Ломоносова проходит набор учащихся на программы МГУ, реализуемые в Университете МГУ-ППИ в Шэньчжэне. Поступление в совместный университет – это возможность учиться в самом быстроразвивающемся городе мира на русском языке у ведущих преподавателей МГУ по самым современным программам, получить образование мирового уровня и дипломы сразу двух университетов, овладев китайским языком. Для поступления в совместный университет не требуется владения китайским языком. Прием документов и экзамены проходят на территории МГУ. Абитуриенты имеют право поступать одновременно в МГУ имени М.В. Ломоносова и МГУ-ППИ в Шэньчжэне.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.