Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

INFOX: Химики МГУ улучшили LED-мониторы осаждением

Ключевые слова:  OLED, периодика

Автор(ы): Ася Парфёнова, Георгий Сарсеков

Опубликовал(а):  Уточникова Валентина Владимировна

17 декабря 2009

Создание светодиодов, или LED — light-emitting diode, по праву считается одним из наиболее значимых достижений химии материалов XX века. Сейчас светодиодные элементы можно встретить где угодно: это и подсветка экранов мобильных телефонов, и индикаторы работы различных бытовых приборов, массивы светодиодов используются для бытового и уличного освещения, в светофорах и экранах наружной рекламы. Однако все это — неорганические светодиоды, созданные на основе различных полупроводниковых соединений. Такие устройства имеют множество достоинств, таких как высокая эффективность, яркость, возможность получить свет практически любой длины волны, при этом чистый, или монохроматичный, с узким пиком и без дополнительных шумов.

Но наряду с достоинствами неорганические LED имеют и ряд недостатков. Например, для начала их работы требуются достаточно высокие напряжения. А еще эти материалы слишком хрупкие. Поэтому с их применением невозможно изготовить гибкие дисплеи — мечту современных маркетологов.

Органический свет

В те же 60−е годы мировому научному сообществу были представлены первые OLED — органические светодиоды. Первые устройства, в качестве основного люминесцентного, или «светящего», материала в которых применялось органическое вещество, были малоэффективными и обладали совсем небольшим временем жизни. Но работа шла, OLED совершенствовались, в 1990−е годы обнаружилось, что некоторые полимеры прекрасно подходят на роль «сердца» OLED. На основе этих материалов и были созданы первые OLED-дисплеи — с низким энергопотреблением и достаточно большим временем жизни.

Впрочем, люминесцентные полимеры все-таки недостаточно устойчивы, поэтому их применение требует сложной конструкции дисплея со специальными покрытиями, которые смогут защитить нежный полимер от воздействия факторов внешней среды. К тому же, спектр люминесценции полимеров представляет собой очень широкую полосу, что делает невозможным получение чистых цветов.

Однако работа над улучшением устройства полимерных OLED — не единственное направление научной работы в этой области. Сейчас многие материаловедческие лаборатории во всем мире работают над получением альтернативных материалов для светящего слоя OLED совершенно иной природы — это так называемые координационные соединения (КС) редкоземельных элементов (РЗЭ). Такие материалы еще называют молекулярными, потому что каждая молекула этого вещества, по сути, — прибор. Она состоит из крупного иона редкоземельного металла, или лантанида, такого как европий или тербий, окруженного сложными и разветвленными анионами и нейтральными группами.

Молекулярная машина

Механизм люминесценции КС РЗЭ довольно сложен, и по-настоящему описать его можно лишь в терминах квантовой механики. Но суть его можно объяснить и в более простых терминах, как это сделал для Infox.ru магистрант факультета наук о материалах МГУ им. Ломоносова Дмитрий Плешков: «Свет поглощается органической частью молекулы. Затем вследствие внутримолекулярного переноса энергия попадает на центральный ион, с которого уже и происходит излучение света».

Использование редкоземельных элементов в силу их физической природы позволяет получать люминесцентные материалы с очень узким пиком люминесценции, то есть с очень монохроматичным светом. Но для того чтобы свечение было ярким, а материал — химически устойчивым и пригодным для создания световых устройств, нужно подобрать иону соответствующее органическое окружение.

Замена одних органических анионов на другие, добавление или замещение нейтральных групп — таких, которые занимают место в координационной сфере, то есть на поверхности крупного атома, но не образуют с ним электрической связи, — все это дает возможность улучшать функциональные свойства люминесцентных материалов. В Лаборатории химии координационных соединений химического факультета МГУ им. Ломоносова, где выполняет свою магистерскую работу Дмитрий Плешков, исследовния КС РЗЭ ведутся уже не первый год. По их результатами выпущено немало статей в ведущих научных журналах, а специалисты, вышедшие из стен лаборатории, продолжают исследования в ведущих лабораториях мира.

От вещества к материалу

Впрочем, получением и исследованием новых соединений в лаборатории не ограничиваются. Кроме чисто химических здесь бьются над решением и материаловедческих задач. Одна из них — получение тонких пленок люминесцентных соединений. «Многие из материалов, которые ярко светят и могли бы быть перспективными для создания OLED-дисплеев, практически невозможно получить в виде тонких пленок теми методами, которые известны на настоящий момент. Мы предложили решение этой проблемы: метод реакционного осаждения», — рассказала Валентина Уточникова, аспирантка и коллега Дмитрия по лаборатории.

Действительно, если вещество плохо растворимо и «нелетуче», то есть с трудом переводится в газовую фазу, то пленку из него получить довольно сложно. В Лаборатории химии координационных соединений создали реактор, который позволяет решить эту проблему для многих соединений. В реакторе раздельно нагреваются и испаряются при низком давлении два вещества — реагенты, из которых можно получить желаемое соединение. В определенный момент они смешиваются и взаимодействуют. Полученное нелетучее соединение тут же осаждается на подложку, а побочные продукты улетают.

Ученые из МГУ научились получать таким способом пленки толщиной 100−200 нм из множества соединений, которые ранее в пленочном виде не получались. Реактор, позволяющий проводить реакционное осаждение, уже запатентован, а результаты, полученные с его помощью, опубликованы. Осталось только соорудить из этих пленок светодиоды и собрать мониторы нового поколения.


В статье использованы материалы: INFOX


Средний балл: 9.8 (голосов 4)

 


Комментарии
Трусов Л. А., 21 декабря 2009 12:00 
"Химики МГУ" уже звучит как "британские учёные".
Парфенова Анна Валерьевна, 21 декабря 2009 18:26 
>>>"Химики МГУ" уже звучит как "британские учёные".

Я больше не буду :)
Александр Евгеньевич, в ЭТОЙ статья рассказывается о работе достаточно небольшой группы и их интересных разработках. ОЧЕВИДНО, что и в других группах занимаются подобными же вещами...

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Танцующая магнитная жидкость (видео)
Танцующая магнитная жидкость (видео)

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.