Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Минимальное приближение к образцу обычной иглы (слева) и иглы, на кончике которой находится молекула угарного газа (справа). Изображение авторов исследования.
Изображение "анатомии" молекулы пентацена (pentacene) с атомным решением – 3D представление. При использовании атомарно острого металлического наконечника, с молекулой угарного газа, ученые IBM получили изображение внутренней структуры молекулы пентацена. (Изображение IBM Research, Цюрих)
Внутренняя структура молекулы пентацена (pentacene)получена при помощи атомного силового микроскопа. Впервые, ученые достигли разрешения, которое показало химическую структуру молекулы. Шестиугольные формы пяти колец в молекуле пентацена, ясно видны. (Изображение IBM Research, Цюрих)

Infox: Первое четкое изображение органической молекулы

Ключевые слова:  IBM, атомный силовой микроскоп, микроскопия, пентацен

Опубликовал(а):  Никитина Елизавета Александровна

29 августа 2009

Создатели атомно-силового микроскопа получили изображение одиночной органической молекулы. Для этого они заострили кончик микроскопного щупа до атома.

Рассмотреть индивидуальный атом — мечта, занимавшая ученых на протяжении десятилетий. Именно поэтому атомно-силовой микроскоп с момента его изобретения в 1986 году сотрудниками лаборатории IBM стал одним из важнейших инструментов химиков и материаловедов. Его работа основана на взаимодействии зонда (кантилевера) — гибко закрепленного и точно перемещаемого заостренного «щупа» — с поверхностью изучаемого образца. Атомно-силовой микроскоп фиксирует притяжение или отталкивание зонда, вызванное силами Ван дер Ваальса, что выгодно отличает прибор от конкурентов — сканирующего электронного (растрового) и сканирующего туннельного микроскопов (подробнее, но популярно, см. тут и тут). Последние также изучают поверхность материала с высокой точностью, однако растровый электронный микроскоп использует в качестве щупа пучок электронов, а туннельный фиксирует, как меняется величина туннельного тока между металлическим кантилевером и образцом. А там, где электричество, необходима проводимость: растровый и туннельный микроскопы могут работать только с проводящими объектами, оставляя без внимания огромную область — органическую химию, столь популярные сейчас углеродные материалы и биообъекты.

Возможности не безграничны

Атомно-силовой микроскоп может исследовать любую поверхность и в любой среде — даже в жидкости. То есть можно исследовать практически все органические молекулы, включая ДНК. Разрешение этого удивительного инструмента по вертикали, то есть по «глубине» изучаемого рельефа, достигается за счет высокой точности оптических сенсоров (особенностей оптической схемы). Что касается разрешения «в плоскости», то во многих случаях удается достичь разрешения атомарного — например, увидеть, как именно устроена углеродная нанотрубка.

Однако изображение индивидуальных простых органических молекул с высоким атомным разрешением до сих пор получить не удавалось. И главное препятствие — сложность изготовления кантилевера. Кончик «щупа» должен быть очень острым — фактически заканчиваться одним атомом. Для полупроводниковых (к примеру, распространенных кремниевых) зондов такая точность пока не достигнута. А высококачественные острые металлические кантилеверы демонстрируют слишком сильное электростатическое взаимодействие с органическими соединениями. И вместо того чтобы исследовать изучаемую молекулу, они захватывают и перемещают ее по поверхности.

Все дело в наконечнике

Лео Гросс и его коллеги из Лаборатории IBM в Цюрихе нашли изящное решение этой проблемы. Они предположили, что если кончик кантилевера модифицировать, присоединив к нему одиночную молекулу, которая не будет столь сильно взаимодействовать с молекулой изучаемого вещества, это позволит фиксировать изменение Ван-дер-Ваальсовых сил, не перемещая при этом образец.

В качестве такой «модифицирующей» молекулы была выбрана молекула монооксида углерода CO (угарного газа). Углерод и кислород в этой молекуле соединены очень прочной связью, благодаря чему она очень слабо поляризована. А значит, электростатическое взаимодействие не сможет помешать выполнить поставленную задачу — исследовать одиночную органическую молекулу.

Под прицелом — пентацен

Объектом исследования стало довольно простое и хорошо изученное соединение — пентацен. Его молекула состоит из пяти бензольных колец, которые соединены между собой гранями и выстроены в линию. Молекула эта плоская и легко ложится практически на любую поверхность. Ученым удалось исследовать ее как на проводящей подложке — медной пластинке, так и на диэлектрической, которой послужил кристалл поваренной соли. Качество полученного изображения молекулы ученых если не удивило (все же они действовали не наугад), то уж точно порадовало. На полученной картинке можно увидеть не только положения атомов углерода, но и углерод-углеродные связи и даже однозначно определить положения водорода.

Ученые не остановились на монооксиде углерода в качестве модификатора «щупа» и попробовали другие варианты для окончания кантилевера: атом хлора и молекулу самого пентацена. Изображения, полученные с помощью таких зондов, оказались также высокого разрешения. На них можно было проследить структуру молекулы, в отличие от работы металлическим зондом, когда судить можно только о местоположении и форме молекулы. Однако разрешение изображений, полученных с помощью хлорного и пентаценового «наконечников», оказались ниже. А в случае хлора за счет большего электростатического взаимодействия произошло и искажение размеров молекулы: бензольные кольца стали меньше.

Перспективы метода

Авторы работы полагают, что придуманный и проверенный ими способ позволит не только более подробно и с высоким качеством изучать органические молекулы с помощью метода атомно-силовой микроскопии, но и приведет «взгляды химиков» к проникновению вглубь химических реакций и каталитических процессов. С помощью их методики, утверждают Гросс и коллеги, можно изучать процессы переноса электронов и распределение заряда, а значит, исследовать реакционную способность различных участков сложных молекул.

Подробнее ознакомиться с теоретическими выкладками и практическими результатами цюрихских ученых можно в их статье, опубликованной в журнале Science.


Источник: Infox, Physics World, Science



Комментарии
Как это - первое изображение органической молекулы? В галерее Нанометра молекула нафталина появилась на два года раньше!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Красное на Черном (Кремлевское Нано)
Красное на Черном (Кремлевское Нано)

Периодическую таблицу Менделеева опять улучшили: наночастицы пятивалентного плутония
Соединения шестивалентного плутония в щелочной среде могут привести к кристаллизации фазы (NH4)PuO2CO3, которая стабильна в течение нескольких месяцев и содержит пятивалентный плутоний. Получение новой фазы пятивалентного плутония фундаментально интересно и открывает новые возможности в разработке более эффективных технологий переработки радиоактивных отходов.

MAPPIC 2019. Второй день
15 октября 2019 года прошел второй день I Московской осенней международной конференции по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

MAPPIC 2019. Первый день
14 октября 2019 года успешно открылась I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.