Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Минимальное приближение к образцу обычной иглы (слева) и иглы, на кончике которой находится молекула угарного газа (справа). Изображение авторов исследования.
Изображение "анатомии" молекулы пентацена (pentacene) с атомным решением – 3D представление. При использовании атомарно острого металлического наконечника, с молекулой угарного газа, ученые IBM получили изображение внутренней структуры молекулы пентацена. (Изображение IBM Research, Цюрих)
Внутренняя структура молекулы пентацена (pentacene)получена при помощи атомного силового микроскопа. Впервые, ученые достигли разрешения, которое показало химическую структуру молекулы. Шестиугольные формы пяти колец в молекуле пентацена, ясно видны. (Изображение IBM Research, Цюрих)

Infox: Первое четкое изображение органической молекулы

Ключевые слова:  IBM, атомный силовой микроскоп, микроскопия, пентацен

Опубликовал(а):  Никитина Елизавета Александровна

29 августа 2009

Создатели атомно-силового микроскопа получили изображение одиночной органической молекулы. Для этого они заострили кончик микроскопного щупа до атома.

Рассмотреть индивидуальный атом — мечта, занимавшая ученых на протяжении десятилетий. Именно поэтому атомно-силовой микроскоп с момента его изобретения в 1986 году сотрудниками лаборатории IBM стал одним из важнейших инструментов химиков и материаловедов. Его работа основана на взаимодействии зонда (кантилевера) — гибко закрепленного и точно перемещаемого заостренного «щупа» — с поверхностью изучаемого образца. Атомно-силовой микроскоп фиксирует притяжение или отталкивание зонда, вызванное силами Ван дер Ваальса, что выгодно отличает прибор от конкурентов — сканирующего электронного (растрового) и сканирующего туннельного микроскопов (подробнее, но популярно, см. тут и тут). Последние также изучают поверхность материала с высокой точностью, однако растровый электронный микроскоп использует в качестве щупа пучок электронов, а туннельный фиксирует, как меняется величина туннельного тока между металлическим кантилевером и образцом. А там, где электричество, необходима проводимость: растровый и туннельный микроскопы могут работать только с проводящими объектами, оставляя без внимания огромную область — органическую химию, столь популярные сейчас углеродные материалы и биообъекты.

Возможности не безграничны

Атомно-силовой микроскоп может исследовать любую поверхность и в любой среде — даже в жидкости. То есть можно исследовать практически все органические молекулы, включая ДНК. Разрешение этого удивительного инструмента по вертикали, то есть по «глубине» изучаемого рельефа, достигается за счет высокой точности оптических сенсоров (особенностей оптической схемы). Что касается разрешения «в плоскости», то во многих случаях удается достичь разрешения атомарного — например, увидеть, как именно устроена углеродная нанотрубка.

Однако изображение индивидуальных простых органических молекул с высоким атомным разрешением до сих пор получить не удавалось. И главное препятствие — сложность изготовления кантилевера. Кончик «щупа» должен быть очень острым — фактически заканчиваться одним атомом. Для полупроводниковых (к примеру, распространенных кремниевых) зондов такая точность пока не достигнута. А высококачественные острые металлические кантилеверы демонстрируют слишком сильное электростатическое взаимодействие с органическими соединениями. И вместо того чтобы исследовать изучаемую молекулу, они захватывают и перемещают ее по поверхности.

Все дело в наконечнике

Лео Гросс и его коллеги из Лаборатории IBM в Цюрихе нашли изящное решение этой проблемы. Они предположили, что если кончик кантилевера модифицировать, присоединив к нему одиночную молекулу, которая не будет столь сильно взаимодействовать с молекулой изучаемого вещества, это позволит фиксировать изменение Ван-дер-Ваальсовых сил, не перемещая при этом образец.

В качестве такой «модифицирующей» молекулы была выбрана молекула монооксида углерода CO (угарного газа). Углерод и кислород в этой молекуле соединены очень прочной связью, благодаря чему она очень слабо поляризована. А значит, электростатическое взаимодействие не сможет помешать выполнить поставленную задачу — исследовать одиночную органическую молекулу.

Под прицелом — пентацен

Объектом исследования стало довольно простое и хорошо изученное соединение — пентацен. Его молекула состоит из пяти бензольных колец, которые соединены между собой гранями и выстроены в линию. Молекула эта плоская и легко ложится практически на любую поверхность. Ученым удалось исследовать ее как на проводящей подложке — медной пластинке, так и на диэлектрической, которой послужил кристалл поваренной соли. Качество полученного изображения молекулы ученых если не удивило (все же они действовали не наугад), то уж точно порадовало. На полученной картинке можно увидеть не только положения атомов углерода, но и углерод-углеродные связи и даже однозначно определить положения водорода.

Ученые не остановились на монооксиде углерода в качестве модификатора «щупа» и попробовали другие варианты для окончания кантилевера: атом хлора и молекулу самого пентацена. Изображения, полученные с помощью таких зондов, оказались также высокого разрешения. На них можно было проследить структуру молекулы, в отличие от работы металлическим зондом, когда судить можно только о местоположении и форме молекулы. Однако разрешение изображений, полученных с помощью хлорного и пентаценового «наконечников», оказались ниже. А в случае хлора за счет большего электростатического взаимодействия произошло и искажение размеров молекулы: бензольные кольца стали меньше.

Перспективы метода

Авторы работы полагают, что придуманный и проверенный ими способ позволит не только более подробно и с высоким качеством изучать органические молекулы с помощью метода атомно-силовой микроскопии, но и приведет «взгляды химиков» к проникновению вглубь химических реакций и каталитических процессов. С помощью их методики, утверждают Гросс и коллеги, можно изучать процессы переноса электронов и распределение заряда, а значит, исследовать реакционную способность различных участков сложных молекул.

Подробнее ознакомиться с теоретическими выкладками и практическими результатами цюрихских ученых можно в их статье, опубликованной в журнале Science.


Источник: Infox, Physics World, Science



Комментарии
Как это - первое изображение органической молекулы? В галерее Нанометра молекула нафталина появилась на два года раньше!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

SWNT (14,5)
SWNT (14,5)

4 февраля объявили лауреатов V Всероссийской премии «За верность науке»
4 февраля в здании Минобрнауки РФ состоялась торжественное награждение лауреатов V Всероссийской премии «За верность науке». 11 научно-просветительских проектов были отмечены престижной наградой.

Всероссийский съезд учителей и преподавателей химии
5 февраля в Московском университете в Шуваловском корпусе МГУ состоится Всероссийский съезд учителей и преподавателей химии, посвященный Международному году Периодической таблицы химических элементов, начало - 10 часов.

II Всероссийский химический диктант пройдет 18 мая 2019 года
В 2019 году периодическому закону Дмитрия Менделеева исполнится 150 лет! В честь великого открытия этот год объявлен Международным годом Периодической таблицы химических элементов. Одним из наиболее ярких событий, приуроченных к этому году, станет II Всероссийский химический диктант, который пройдет 18 мая и который в этом году выходит на международный уровень. Мероприятие было анонсировано в рамках церемонии открытия Международного года Периодической таблицы химических элементов 29 января 2019 года в Париже, в штаб-квартире ЮНЕСКО.

Самые необычные таблицы Менделеева на выставке Международного года Периодической таблицы химических элементов

6-8 февраля в Российской академии наук состоялось торжественное открытие Международного года периодической таблицы химических элементов в России и приуроченная к этому масштабная интерактивная выставка

Почувствовать живое...
Е.А.Гудилин, А.А.Семенова, Н.А.Браже
Неразрушающее исследование живых клеток и клеточных структур является в настоящее время важным направлением научных изысканий, которые во многих зарубежных и российских научных группах направлены на достижение вполне прагматической цели – разработку новых принципов биомедицинской диагностики и эффективных подходов в нарождающейся персональной медицине.

Российская газета: Перевернуть пирамиду. Президент РАН: как повысить наши шансы на Нобеля
Юрий Медведев
Почему Россия по числу Нобелей отстает от ведущих стран мира, уступая, например, даже маленькой Швейцарии? Замалчиваются ли достижения отечественных ученых? Почему без привлечения в науку российского бизнеса мы не сможем успешно конкурировать в борьбе за престижную научную премию? Об этом корреспондент "РГ" беседует с президентом РАН Александром Сергеевым, который побывал в Стокгольме на вручении Нобелевских премий и поделился своими впечатлениями.

Инновационные системы: достижения и проблемы
Олег Фиговский, Валерий Гумаров

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.