Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Наноазбука: кантилевер

Ключевые слова:  кантилевер, наноазбука, периодика, сканирующая зондовая микроскопия

Автор(ы): Д.М.Иткис (ФНМ МГУ)

Опубликовал(а):  Иткис Даниил Михайлович

06 июня 2007

Сильные и могущественные не имеют того
преимущества, какое есть у нежного и слабого.
Лао-цзы





Кантилевер (cantilever) – консоль, кронштейн, одна из основных частей сканирующего зондового микроскопа.

Представьте себе трамплин для прыжков в воду, но не для обычных людей, таких как мы с вами, а для малюсеньких микрочеловечков, ноги которых в 10 раз тоньше человеческого волоса – именно так выглядит кантилевер. С одной стороны, кантилевер – это всего лишь крошечная балка; толщина которой составляет от 0.1 до 5 мкм, ширина - от 10 до 40 мкм, а длина - от 100 до 200 мкм. С другой стороны, кантилевер является незаменимым помощником нанотехнолога. С его помощью ученые могут «ощупать» поверхность и лежащие на ней отдельные молекулы, перемещать их, производить химические опыты со столь малыми количествами веществ, которые нельзя взвесить даже на самых точных лабораторных весах.

От длины, ширины, толщины, а также природы материала, из которого сделан кантилевер, зависит его жесткость. Чем кантилевер длиннее и тоньше – тем легче он гнется. Можно сделать такой мягкий кантилевер, что с его помощью возможно будет надавить на поверхность с силой в одну миллиардную долю ньютона. Это в тысячу раз меньше, чем сила, с которой пылинка давит на стол, на котором она лежит!

Такие маленькие силы нужны для сканирования поверхности, чтобы, например, можно было отличить лежащие на ней отдельные молекулы. На кончике кантилевера обычно расположена микроскопическая и очень острая иголка. Если бы кантилевер не мог хорошо гнуться, то при подводе его к поверхности с помощью системы нанопозиционирования, игла просто повредила бы поверхность, воткнувшись в нее. Но кантилевер всегда подбирают настолько мягким, чтобы при подводе к поверхности он мог изогнуться, а поверхность оставалась бы в целости и сохранности. В какой-то степени кантилевер похож по своим функциям на инструмент лозоходца – расщепленную лозу, которая то ли воду под землей чувствует, то ли настроение ее обладателя, однако величина отколонения (или частота колебаний в особом режиме работы) кантилевера связаны с вполне физическими явлениями - взаимодействием с атомами или молекулами на поверхности исследуемого образца. Кантилеверы также применяются для модификации поверхности. Используя жесткие кантилеверы (и алмазные иглы) можно делать гравировку и проводить «наночеканку» – выдавливать на поверхности крошечные рисунки (наноинденторы).

Производство кантилеверов основано на использовании двух материалах – кремния и нитрида кремния. Острия для «атомно-силовой микроскопии» (АСМ) также изготавливают из кремния, нитрида кремния или алмаза, а также используют покрытия TiN, W2C, Pt, Au, или магнитных материалов Fe-Ni/Cr, Co/Cr, CoSm/Cr. Чтобы сделать столь маленькие детали, используют процессы литографии, химического и физического травления. Для улучшения светоотражающих свойств обратную сторону зонда АСМ обычно покрывают алюминием или золотом с помощью термического напыления в вакууме. Кроме того, покрытие кантилевера пьезоэлектрической керамикой на основе цирконата-титаната свинца (Pb[ZrxTi1-x]O3, ЦТС или PZT) позволяет управлять движением кантилевера, прикладывая к контактам разность потенциалов или непосредственно считывать частоту его свободных колебаний. Такие устройства находят сегодня широкое применение для разработки и создания «наноэлектромеханических систем», «систем нанопозиционирования», «наноактюаторов», «наносенсоров», «нановесов» и т.д.

Геометрия кантилевера определяет важные механические свойства (в первую очередь жесткость и резонансную частоту), и варьируется в широких пределах. Ниже приведена формула, определяющая константу жесткости k:

k = Ewt3/(4L3),


где E – модуль Юнга материала кантилевера, w – ширина, t – толщина, а L – длина прямоугольного кантилевера. Кроме обычных прямоугольных кантилеверов, похожих на трамплин для прыжков воду, делают, например, V-образные кантилеверы, которые легко гнуться в перпендикулярном своей плоскости направлении, но практически не перекручиваются.


Литература


Миронов В.Л.. Основы сканирующей зондовой микроскопии. 2004. Мир.



Средний балл: 8.4 (голосов 11)

 


Комментарии
Но в нано мире на контилвер будут действовать силы межмолекулярного притяжения.
Сама по сибе стотья не плохая,но для тех,кто пишет нанознайку она забрала ещё одно слово.
Да, тема возникновения контилевера как тач-зонда в туманной зоне обсолютно ни роскрыто
Владимир Владимирович, 22 марта 2009 15:31 
Александр Борисович,
Представил еще ежа и держащим шапку с лозунгом: необходимо немедленное выделение средств на активное исследование неизвестного пугающего туманного завтра всеми имеющимися передовыми технологиями.
(другими обсуждениями навеяно что ли...)

А предыдущего автора - действительно в тумана сумрака топку!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Останки древнего нанонаутилуса
Останки древнего нанонаутилуса

Пять медалей завоевали российские школьники на Международной физической олимпиаде
Стали известны итоги 50-й Международной физической олимпиады для школьников, которая проходила в Тель-Авиве (Израиль). Российская сборная завоевала в состязаниях 4 золотые и одну серебряную медаль.

Поступление в совместный российско-китайский Университет МГУ-ППИ в Шэньчжэне
В июле 2019 года в МГУ имени М.В. Ломоносова проходит набор учащихся на программы МГУ, реализуемые в Университете МГУ-ППИ в Шэньчжэне. Поступление в совместный университет – это возможность учиться в самом быстроразвивающемся городе мира на русском языке у ведущих преподавателей МГУ по самым современным программам, получить образование мирового уровня и дипломы сразу двух университетов, овладев китайским языком. Для поступления в совместный университет не требуется владения китайским языком. Прием документов и экзамены проходят на территории МГУ. Абитуриенты имеют право поступать одновременно в МГУ имени М.В. Ломоносова и МГУ-ППИ в Шэньчжэне.

Вокруг Нанограда
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. И сам город оказался молодым, динамичным, современным и интересным. Ниже дан небольшой фоторепортаж вокруг Нанограда, беглый взгляд, что собой представляет Ханты - Мансийск.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.