Ответ Семеновой Анны Александровны на задачу "Забавные матрешки" секции "Нанохимия"
1. При увеличении размеров частиц ширина запрещенной зоны уменьшается. Это связано с тем, что чем больше вокруг атомов, тем легче оторвать электрон. Найдем объемы данных частиц: (см. Рис. слева). Значит, в порядке возрастания ширины запрещенной зоны наночастицы GaN нужно расположить следующим образом: сферическая частица с диаметром 160 нм < сферическая частица с диаметром 80 нм < сферическая частица с диаметром 8 нм < кубическая частица с ребром 4 нм < сферическая частица с диаметром 4 нм < тетраэдрическая частица с ребром 4 нм.
2. Эффективность флюоресценции будет тем выше, чем больше размер частиц (по причине, высказанной выше). Очевидно, эффективность повышается, если в оболочке находится частица с большим размером. Размер атома увеличивается в ряду Al < Ga < In, следовательно можно расположить предложенные частицы в порядке увеличения эффективности флюоресценции: [GaN(ядро)AlN(оболочка)] < [AlN(ядро)GaN(оболочка)] < [InN(ядро)GaN(оболочка)] < [GaN(ядро)InN(оболочка)]
3. Для создания такого клеточного процессора необходимы квантовые точки с полупроводниковыми и, скорее всего, магнитными свойствами. Например, [InN(ядро)GaN(оболочка)].
4. Упорядоченно разместить квантовые точки поможет метод молекулярно-лучевой эпитаксии, который позволяет получать массивы электронно-связанных квантовых точек. Суть процесса – осаждение различных кристаллизующихся материалов на кристаллическую подложку, находящуюся в высоком вакууме.
5. Для получения квантовых точек (InN) используется явление самоорганизации, когда выращивают пару монослоёв пленки InN плёнки на подложке GaN. Т.к. рассогласование объёмных постоянных решёток достигает около 10%, данная плёнка рвётся, и InN собирается в островки – квантовые точки.
6. Электроны отталкиваются и стараются занять такое положение, чтобы быть как можно дальше друг от друга, поэтому располагаются в противоположных углах по одной или другой диагонали. Возможно два варианта, следовательно, устойчивыми конфигурациями распределения этих двух электронов по «процессору» будут следующие (электроны выделены синим цветом): (см. рис. слева)
7. Электроны могут перемещаться по системе следующим образом. Если подвести к квантовым точкам два провода, например, с левой стороны, и нижний присоединить к положительному напряжению (рис. а), то положительный заряд под действием электростатической силы (красная стрелка на рис. б) переместится. Когда оба заряда окажутся друг под другом, верхний перейдет влево (рис.в). Таким образом, показан переход от «1» к «0». (см. рис. слева)
8. Рассмотрим систему с тремя «входными» ячейками (А, В и С) и одной «выходной» (output): (см. рис. слева)
Логический элемент «И»
Для создания элемента «И» нужно закрепить одну из «входных» ячеек на «0» (на рис. – ячейка C). Остальные ячейки установить на «0». Последовательность действий: напряжение к B -> напряжение к А -> напряжение к B. Значение «выходной» ячейки – «0». Рис. иллюстрируют начальное (слева) и конечное (справа) состояние: (см. рис. слева)
Логический элемент «ИЛИ»
Необходимо зафиксировать значение одной «входной» ячейки на «1» (на рис. – ячейка C). Последовательность действий: напряжение к B -> к А -> к B. Тогда «выходное» значение также будет «1». На рис. приведено начальное состояние (слева) и конечный результат (справа): (см. рис. слева)