Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Поры бывают разные – длинные, узкие, частые…

Ключевые слова:  Интернет-олимпиада, Наноазбука

Автор(ы): Харламова Марианна Вячеславовна

Опубликовал(а):  Травкин Илья Олегович

10 мая 2009

Ответ М.В.Харламовой на задачу "Поры бывают разные, ..." секции "Наноматериалы"

1. Для формирования защитных покрытий на металле (например, алюминии или титане) используется метод анодного окисления, которое позволяет получить толстую оксидную пленку. На аноде протекают следующие реакции:

Ti(тв) + 2H2O (жидк) – 4e-= TiO2 (аморф) + 4H+;

Al(тв) + 1.5 H2O -3e = 0.5 Al2O3 (аморф) + 3H+, а ионы водорода восстанавливаются на катоде с образованием газообразного водорода: H+ + e- → 1/2H2(газ)

Механизм образования пор схематично показан на рис. 1. Образование пор протекает в четыре стадии. На первой стадии окисления поверхность алюминия покрывается барьерным слоем, который состоит из непроводящего оксида алюминия (r = 1010 - 1012 Ом×см). Напряженность электрического поля резко возрастает в углублениях оксидной пленки (стадия 2 на рис. 1), что приводит к протеканию процесса растворения оксида под действием электрического поля, либо растворения за счет локального роста температуры (стадия 3 на рис. 1).

Ввиду конкуренции соседних точек стока заряда часть пор прекращают свой рост, (стадия 4 рис.1).

Изначальное расположение пор на поверхности алюминия случайное, однако в процессе длительного окисления они упорядочиваются. Для получения пленки с прямыми цилиндрическими гексагонально упорядоченными порами необходимо проводить так называемое двух стадийное окисление.

Для объяснения гексагонального упорядочения пор в процессе длительного окисления Jessensky с сотрудниками предложил модель механических напряжений. В рамках данной модели авторы основываются на нескольких предположениях:

Поры растут перпендикулярно металлической подложке. При этом процессы растворения оксида под действием электрического поля на границе раздела оксид/электролит и роста оксида на границе металл/оксид находятся в равновесии.

Окисление алюминия происходит ионами O2- и OH-, диффундировавшими через оксидный слой.

Ионы Al3+ также диффундируют через оксидный слой, при этом в случае образование пористой пленки часть ионов Al3+ переходят в электролит на границе раздела оксид/электролит. В случае же образования пленок барьерного типа все ионы Al3+ достигшие границе раздела оксид/электролит вносят вклад в образование оксидной пленки и не переходят в электролит.

В результате окисления образуется Al2O3. Атомная плотность алюминия в оксиде в два раза меньше, чем в металлическом алюминии, следовательно, при анодировании происходит увеличение объема приблизительно в два раза.

В результате объемного расширения оксида алюминия в плоскости пленки возникают сжимающие напряжения, способствующие образованию упорядоченной пористой структуры. Кроме того, сжимающие напряжения в плоскости пленки способствуют росту пленки вверх.

Таким образом, за счет механических напряжений происходит самоупорядочение структуры пленки в процессе роста, то есть самоорганизация.

На упорядоченность структуры анодных оксидов влияет наличие примесей в исходном металле, так для получения пористого алюминия с высокоупорядоченной структурой требуется использовать высокочистый алюминий (>99,99%). Окисление алюминия, содержащего большее количество примесей, приводит к формированию неупорядоченной структуры из-за различий в коэффициентах объемного расширения различных оксидов и наличия дефектов в исходном металле и растущей пленке.

Шероховатость поверхности также может оказывать существенную роль при получении пленок анодных оксидов. Если поверхность будет иметь большую шероховатость, то концентрация силовых линий будет происходить на впадинах на поверхности металла, таким образом, поры начнут прорастать там, где была впадина. А поскольку впадины расположены случайно, следовательно, будет случайное расположение пор.

2. Пористость – отношение объема занимаемого пор в материале ко всему объему материала: (см. Рис. слева)

3. Для получения мезопористого диоксида кремния используется методика поликонденсации источника кремния тетроэтоксисилана или силиката натрия вокруг темплата, представляющего собой мицеллы поверхностно активного вещества. Поскольку в растворе мицеллы располагаются упорядоченно друг относительно друга, то и структура образующаяся после поликонденсации будет упорядоченной. После поликонденсации темплат можно удалить путем отжига или отмывания мезопористого оксида кремния в органических растворителях.

4. Магнитные записывающие элементы могут быть введены в поры пористого оксида кремния путем пропитки его прекурсором (например карбонилами железа, никеля или кобальта) из которого, затем формируются магнитные наночастицы с последующей модификацией. Либо можно пропитать наночастицами, и затем отжечь для формирования нанонитей.

5. В результате проведения данного процесса в порах мезопористого оксида кремния формируются магнитные нанонити, которые обладают магнитной анизотропией (то есть их достаточно сложно перемагнитить в направлении совпадающим с направлением оси нанонити) – следовательно, если намагничивать данные нити в направлении их оси то они будут ферримагнитными, в отличии он наночастиц, которые не обладают анизотропией.

6. Рассчитаем плотность записи на пленку из такого нанокомпозита. Диаметр пор мезопористого оксида кремния – 2 нм (что соответствует диаметру нити), длина нити должна быть минимум в 10 раз больше, для того, чтобы наблюдалась анизотропия магнитных свойств. Для уверенности возьмем нитку в 50 раз больше – 100 нм. Пусть расстояние между нитями в дорожке – 5 нм. Расстояние между дорожками – 20 нм.

Таким образом, площадь, занимаемая одним битом информации, будет равна: (см. Рис. слева)

Рассматриваемые пористые системы могут также применяться в качестве газоселективных мембран, работающих за счет механизма диффузии Кнудсена. В качестве носителей для различных катализаторов и наполнителей для хроматографических колонок. Также могут использоваться для ультра- и микрофильтрации.


В статье использованы материалы: Интернет-олимпиада


Средний балл: 10.0 (голосов 5)

 


Комментарии

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Человеческий волос 2. Крашеный.
Человеческий волос 2. Крашеный.

Фотоконкурс по Периодической Системе Элементов имени Д.И.Менделеева
Конкурс авторских фотографий школьников, студентов, аспирантов, молодых ученых, учителей и преподавателей, содержащих интересные и необычные варианты Периодической Системы Элементов имени Д.И.Менделеева или отдельных химических элементов. Конкурс организован Российским Химическим Обществом имени Д.И.Менделеева при поддержке Факультета наук о материалах МГУ имени М.В.Ломоносова и Фонда инфраструктурных и образовательных программ.

17 компаний стали обладателями Знака «Российская нанотехнологическая продукция»
Одним из репутационных инструментов для защиты инновационных компаний наноиндустрии является знак «Российская нанотехнологическая продукция». Торжественное вручение знака состоялось 7 декабря в рамках VI Конгресса предприятий наноиндустрии.

International photography contest denoted to the year of 150 Anniversary of the Periodic Table of Elements
Russian Chemical Society named after D.I.Mendeleev starts in the frame of XII Russian Olympiad "Nanotechnology - Breakthrough to the Future!" under the support of Faculty of Materials Science of Lomonosov Moscow State University and the Fund for Infrastructure and Educational Program the International photography contest denoted to the Year of 150 Anniversary of the Periodic Table.

Прощай, лампочка Ильича!
Д.Н.Плешков
Современные светоизлучающие устройства безальтернативно завоевывают рынок и становятся частью нашей повседневной жизни.

Композиты УНТ-ГАП – биоактивная матрица для роста костных тканей
Е.С.Климашина
Нанокомпозиты - одно из перспективных направлений развития материаловедения в интересах биологии и современной медицинской практики.

Умный дом
Н.В.Лысков
Умные дома могут составить яркую черту нашего будущего и прогресс в этом направлении связан с созданием новых поколений наноматериалов.

Система практик ФНМ МГУ
А.Б.Тарасов, А.В.Кнотько, Е.А.Гудилин

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!

Проектная работа

Сегодня становится все более популярной так называемая проектная работа школьников, однако на этот счет есть очень разные мнения. Мы были бы признательны, если бы Вы высказали кратко свое мнение по этому поводу путем голосования. Заранее благодарны!

Закон о реформировании РАН

В Совместном заявлении Совета по науке и членов Общественного совета Минобрнауки предлагается отозвать нынешний проект закона о "реформировании" РАН из Государственной думы и вернуться к его рассмотрению с соблюдением процедуры утвержденной постановлением Правительства РФ №851 от 25.08.2012, и указом Президента РФ №601 от 07.05.2012, которая была грубо нарушена. Мы предлагаем Вам высказать (анонимно) свое мнение в данном опросе, чтобы его статистические результаты были видны всем участникам опроса и общественности.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.