Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Механизм заряда литий-ионной батареи.
Частицы катодного материала (РЭС - вверху, ПЭМ - внизу). Виден тонкий аморфный слой.
Разряд аккумулятора при скоростях от 2С до 50С.
Зависимость емкости от количества циклов заряд-разряд.
Сверхскоростной разряд при 200С и 400С. Приведены зависимости для первого, пятидесятого и сотого циклов.

Катодный материал для сверхскоростных литий-ионных батарей

Ключевые слова:  литий-ионные батареи, наноматериал

Опубликовал(а):  Трусов Л. А.

13 марта 2009

Литий-ионные аккумуляторы можно обнаружить практически в каждом современном мобильном электроприборе. Одним из их недостатков являются сравнительно невысокие токи разряда и заряда, в результате чего аккумуляторы заряжаются достаточно долго, а при работе не могут обеспечить большую выходную мощность. Принцип работы литий-ионных батарей основан на перераспределении ионов лития между электродами, поэтому максимальный ток напрямую зависит от скорости их транспорта. Исследователи из MIT (США) разработали наноматериал на основе железо-литиевого фосфата LiFePO4, который обладает высокой подвижностью лития и благодаря этому обеспечивает высокие скорости разряда батарей.

LiFePO4 уже используется в качестве материала положительного электрода литий-ионных аккумуляторов. Недавно было показано, что литий может входить в кристаллическую структуру LiFePO4 лишь вдоль определенного направления, а именно, [010]. Исследователи предположили, что если обеспечить транспорт ионов лития вдоль поверхности кристалла к соответствующим граням, то это существенно увеличит скорость разряда батареи.

В ходе экспериментов твердофазным методом был получен порошок общего состава LiFe0.9P0.95O4-x с размером кристаллитов около 50 нм. На поверхности частиц феррофосфата наблюдался 5 нм слой обогащенной фосфором стеклообразной фазы, близкой по ряду характеристик к пирофосфатам. Авторы предположили, что она, в отличие от LiFePO4, обладает хорошей литиевой проводимостью в различных направлениях, поэтому даже тонкий ее слой значительно улучшает диффузию ионов Li+ вдоль поверхности кристаллитов LiFePO4.

Для исследования электрохимических свойств была собрана электрохимическая ячейка с катодом из нового материала и литиевым анодом, аналогичная по конструкции литиевым аккумуляторам. Для описания скорости разряда аккумулятора обычно используется время его полного разряда. За единицу измерения принимается такая скорость, при которой разряд полной емкости емкости С происходит за один час; тогда при скорости nC аккумулятор разрядится за 1/n часов.
При достаточно высокой для литиевых аккумуляторов скорости 2С полученный материал демонстрировал емкость, близкую к теоретической (около 170 мАч/г), и даже при 50С сохранял до 80% от этой величины; при этом за 50 циклов заряда-разряда не произошло какого-либо заметного снижения емкости. Возможно также достижение емкости 100 мАч/г при скорости 200С и 60 мАч/г - при 400С, что во много раз выше, чем у современных литий-ионных батарей. Емкость материала стехиометрического состава, полученного в тех же условиях, также достаточно велика, но заметно ниже описанной.
Развиваемая исследуемой ячейкой мощность достигает 170 кВт/кг при 400С, в то время как мощность современных литиевых аккумуляторов при обычных скоростях разряда составляет 0.5 - 2 кВт/кг. Способность литий-ионных батарей так быстро заряжаться и разряжаться ставит их в один ряд с суперконденсаторами. Продолжительность зарядки аккумулятора мобильного телефона может составить всего несколько десятков секунд, а мощной батареи электромобиля – несколько минут. Конечно, пока это лишь лабораторная разработка, и неизвестно, смогут ли ученые реализовать весь потенциал нового материала на практике.

Работа «Battery materials for ultrafast charging and discharging» опубликована в журнале Nature.


Источник: Nature



Комментарии
Владимир Владимирович, 14 марта 2009 04:56 

А откуда емкость в "100 раз выше"? Статья вроде про скорость зарядки/разрядки.
И "едИницах"
Трусов Л. А., 14 марта 2009 12:23 
я, конечно, не уверен, но, наверное, автор скорость имел в виду. кстати, про скоростную зарядку там в статье что-то ничего нет.
Особого противоречия нет, если иметь в виду емкость именно при высоких скоростях разряда.
Владимир Владимирович, 15 марта 2009 00:56 
Очень разумно
(хотя и нетипично немного)
Сверхполезно!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

К дню Святого Патрика
К дню Святого Патрика

Заочный тур по комплексу предметов наноолимпиады открыт
Опубликованы задания заочного тура для школьников 7 - 11 классов по комплексу предметов "химия, физика, математика, биология" XIV Всероссийской Интернет-олимпиады по нанотехнологиям "Нанотехнологии - прорыв в будущее!".

Успехи химии - самый цитируемый российский научный журнал
Успехи химии - самый цитируемый российский научный журнал по данным Journal Citation Reports за 2018 г., импакт - фактор 4.612, пятилетний 4.263, квартиль Q1.

Содержание 4 и 5 номеров Mendeleev Communication
Вышли 4 и 5 номер журнала Mendeleev Communication, ссылки на статьи в Scientific Direct даны на сайте журнала. Журнал публикует (и достаточно быстро) короткие сфокусированные сообщения по широкой тематике, в том числе, по материалам, наноматериалам, нанохимии в сотрудничестве с компанией Elsevier.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.