Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Экситон (exсiton)

Ключевые слова:  наноазбука, периодика, экситон

Автор(ы): Наноазбука (первая версия)

Опубликовал(а):  Гудилин Евгений Алексеевич

21 декабря 2008

“Мы с Тамарой ходим парой”

Агния Барто

Давайте задумаемся о том, как устроены твердые тела. Например, что представляет собой кусок металла? Конечно, Вы знаете, что он образован из упорядоченных в пространстве атомов этого металла, которые в целом нейтральны и состоят из положительных ядер и отрицательных электронов, движущихся по некоторым траекториям. В изолированных друг от друга атомах электроны занимают вокруг ядра строго определенные энергетические уровни, между которыми они перемещаются, поглощая или излучая энергию, что является причиной дискретного энергетического спектра атома. А что произойдет со спектром, если атомы сблизить и образовать из них некоторую структуру – будут ли электроны помнить, к какому ядру они раньше относились?

Представьте себе, что Вы экскурсовод и во время экскурсии оказались с большой группой туристов на людной и шумной площади перед очень популярным памятником архитектуры. Вы находитесь среди огромного числа других экскурсионных групп и спешащих куда-то прохожих – в общем, среди большой толпы народа. Чем дальше от Вас стоят туристы Вашей группы, тем сложнее Вам следить за тем, чтобы они не отставали, и тем больше вероятность того, что это все-таки произойдет. Если кто-то из них упустит Вас из виду, увлекшись фотографированием очередного памятника, то потом, перепутав, может примкнуть к другой экскурсионной группе, а, обнаружив ошибку, будет блуждать от одной группы к другой. Вот так происходит и с электронами в твердом теле – чем дальше в атоме электрон располагается от ядра, тем слабее он с ним связан электростатическими взаимодействиями. Поэтому при образовании упорядоченной структуры твердого тела часть наиболее удаленных от ядра электронов может при определенных условиях обобществляться. В металлах это происходит уже в невозбужденном состоянии, в результате чего металлическую решетку часто рассматривают как положительно заряженный остов, в узлах которого находятся окруженные внутренними электронами ядра (это скопившиеся на площади туристические группы), а междоузлия заполнены свободным электронным газом (блуждающие потерявшиеся туристы).

В физике строение твердого тела обычно представляют с точки зрения зонной теории, согласно которой в его электронной структуре можно выделить валентные зоны и зоны проводимости – некоторые интервалы энергии, которым соответствуют те или иные электронные состояния (рис.1). Разрешенные энергетические зоны разделяются запрещенными – набором энергетических состояний электронов, которые не реализуются в данной системе. Известно, что валентная зона всех проводников (металлов) полностью заполнена, а свободные электроны даже в невозбужденном состоянии находятся в зоне проводимости, что объясняет высокую электропроводность таких материалов. В случае непроводников, находящихся в невозбужденном стационарном состоянии, все электроны строго локализованы вокруг определенных ядер, поэтому зона проводимости остается пустой. Однако если валентные электроны получат избыток энергии (например, при облучении вещества светом), они могут «перепрыгнуть» через запрещенную зону и оказаться в зоне проводимости, став свободными, но оставив за собой в валентной зоне вакантное место – дырку – с положительным элементарным зарядом. В зависимости от величины запрещенной зоны Eg твердые тела разделяют на полупроводники (Eg £ 3 эВ) и диэлектрики (Eg ³ 3 эВ).

Тем не менее, часто возникает ситуация, когда электрон поглотил квант света, но его энергии оказалось недостаточно, чтобы перейти в зону проводимости. Если в веществе есть небольшое количество атомов примеси, они обеспечивают дополнительные уровни энергии в запрещенной зоне (рис.1), за которые электрон может зацепиться и остаться в запрещенной зоне, взаимодействуя с дыркой посредством электростатических сил. Такое связанное состояние «электрон-дырка» называется экситоном (от лат. excitо – возбуждаю). Этот электрон, словно отбившийся турист, который, хотя и потерял свою группу под воздействием толпы, но помнит о ней и имеет возможность ее найти. Так же и у электрона есть возможность испустить квант света и вернуться на свое исходное положение в валентной зоне (экситонный переход). При этом соседний атом может поглотить выделяющийся квант энергии, в результате чего возникнет новая экситонная пара, которая затем тоже исчезнет, а электронное возбуждение будет передаваться дальше от атома к атому, мигрируя по кристаллу. Но есть у него и другая возможность - проходит какое-то время, и оказывается, что экскурсовод уже увел группу с площади, а потерявшийся турист остался один – теперь ему не остается ничего другого, как осматривать достопримечательности самостоятельно. Аналогично электрон может дополнительно поглотить энергию и все-таки стать свободным, допрыгнув до зоны проводимости и обеспечив вклад в плотность свободных носителей заряда данного материала.

Таким образом, экситон в твердом теле можно считать элементарной квазичастицей в тех случаях, когда он выступает как целое образование, не подвергаясь воздействиям, способным его разрушить. Энергия связи дырки и электрона определяет радиус экситона, который является характеристической величиной для каждого вещества. Как показывает практика, в полупроводниках энергия связи экситона мала (не превышает 10 мэВ), а наибольшим боровским радиусом экситона обладают полупроводники типа AIVBVI. Например, для сульфида и селенида свинца эта величина составляет 2 нм и 4,6 нм, соответственно, в то время как, для сравнения, у сульфида кадмия ее величина не превышает 0,6 нм.

С образованием и уничтожением экситонов связывают особенности оптических спектров наноструктур, в которых резкие линейчатые компоненты, нехарактерные для макроскопических тел, наблюдаются вплоть до комнатных температур. Установлено, что величина энергии связи экситона зависит от размера наночастицы, если размер частицы сопоставим или меньше радиуса экситона. Поэтому, получая монодисперсные коллоидные растворы наночастиц различных размеров, можно управлять энергиями экситонных переходов в широком диапазоне оптического спектра.

Литература

В.И. Белявский Экситоны в низкоразмерных системах. СОЖ 1997, №5, с. 93-99.

П.В. Павлов, А.Р.Хохлов Физика твердого тела. Изд-во «Высшая школа». М.2000


В статье использованы материалы: Нанометр


Средний балл: 10.0 (голосов 4)

 


Комментарии
А, ведь, в первой НА статья была соершенно другая...
exciton, не exiton
Владимир Владимирович, 01 января 2009 21:26 
Точно!
"Возбужденный", а не "выходящий"
И очень образно написанная статья!
Статья хороша. Здесь бы и про квантовые колодцы немного порассуждать, "дно" которых, собственно, и является экситонами.
Новый 2009 наступил. С Новым годом и Новыми задачами.
Геннадий Семенович.
Владимир Владимирович, 02 января 2009 06:32 
Геннадий Семенович,
А как "дно" может "являться экситонами"?
Дно - лишь задает энергетический уровень частиц (электрона чаще всего).
Разумно, что энергия связи экситона будет пропорциональна локализации электрона.
Или я что-то упускаю со своей неэкспертной точкой зрения?
Владимир Владимирович!
Своим высказыванием я обращал внимание на
/ Квантовая механика /
Конденсат Бозе-Эйнштейна [из экситонов], которые опускаются на дно квантовых колодцев Здесь и Здесь
Владимир Владимирович, 02 января 2009 18:51 
Ух, ну там же хитрые двойные колодцы
А тут Наноазбука -Барто- про Нано то
Владимир Владимирович!
Помнится мы с Вами обсуждали возможности построения нанофоконных трубок. Мне кажется, что ЭТА ссылка имеет прямое отношение к нашему разговору.
Владимир Владимирович, 02 января 2009 21:29 
Геннадий Семенович!
Эх, были годы!
А ныне, и молодежь - не та что в былое время, и снег уж не такой белый и пушистый...
Да и мне не уразуметь никак про "прямое отношение". Кремниевые нанотрубки - все-таки несколько гипотетичны и умозрительны, и наибольшая от них польза, как мне кажется, для написания статей умных...
Нанопроводочки кремниевые - более реальны как "нанофоконы"...
Но в их практической реализации - я совсем мало смыслю
И возможности там нужны не детские и не хомячковые
Владимир Владимирович!
Эх, были годы!
Но, кремниевые трубки снова могут оттеснить графеновые структуры
Владимир Владимирович, 04 января 2009 17:37 
Геннадий Семенович!
Кремниевые нанотрубки вряд ли смогут оттеснить графеновые структуры по той простой причине, что двойная связь кремний-кремний не очень стабильна
(Иными словами просто не существует стабильного кремниевого аналога графену)
Кремниевые же нанопроводочки, где нет двойных связей, могут быть полезны науке и технологии.
"Установлено, что величина энергии связи экситона зависит от размера наночастицы, если размер частицы сопоставим или меньше радиуса экситона."
Причем здесь размер частицы и величина энергии связи экситона? Скажите кто знает - как и почему это связанно между собой
Юный максималист, 26 января 2011 21:33 
При уменьшении размера частицы потенциал
"кулоновского" взаимодействия электрона и дырки
отклоняется от привычной гиперболы
(пропорционально 1/r) из-за того, что r не
может превышать диаметра частицы.
Зависимость вида потенциала от размера приводит
и к размерной зависимости энергии связи
экситона.
Если дадите мэйл, могу скинуть статейку из СОЖ.
Юный максималист, 26 января 2011 23:10 
Еще один комментарий.
В данной заметке говорится только о связанных
экситонный состояниях, для которых либо
электрон, либо (чаще) дырка захватываются
атомами примеси. Такая локализация обычно
наблюдается при понижении температуры, в то
время как для комнатной температуры свойственны
свободные экситоны (если энергия связи больше
kT)

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Одухотворение весны
Одухотворение весны

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.