Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. РЭМ-изображения мезопористого TiO2 (a) и PANI/TiO2 (b).
Рисунок 2. РЭМ-изображения клеток E.coli на поверхности анода PANI/TiO2 (a, b, c – различные увеличения) и просто в растворе электролита (d).
Рисунок 3. Мощность бактериальной топливной ячейки с анодом из PANI/TiO2 (содержание PANI 30% по массе).

Новый анод для микробных топливных ячеек

Ключевые слова:  альтернативные источники тока, периодика, топливные элементы

Опубликовал(а):  Трусов Л. А.

05 марта 2008

Микробные топливные ячейки являются «зеленым» источником энергии. Зеленее некуда. В таких ячейках в качестве маленького биореактора используется целый микроорганизм, с высокой эффективностью перерабатывающий в электричество органические соединения, от вкусных углеводов до бесполезных отходов. Но не все так радужно: низкая мощность и недостаточная стабильность ограничивают практическое применение микробных элементов питания. А мощность микробной топливной ячейки зависит прежде всего от анода, который ассоциирован непосредственно с микроорганизмами.

Для хорошего анода очень важна площадь поверхности, на которой могли бы разместиться бактерии. Мезопористый TiO2 обладает огромной поверхностью, является биосовместимым, стабильным и экологически безопасным. К сожалению, низкая проводимость TiO2 не позволяет аноду выдавать высокую мощность. Положение можно исправить, модифицировав анод из мезопористого TiO2 полианилином (PANI), который характеризуется высокой проводимостью, стабильностью и простотой синтеза. Такой композитный анод PANI/TiO2 был создан учеными из Сингапура.

Экспериментальным путем было установлено, что лучшие показатели дает анод, содержание PANI в котором составляет 30% (по массе). На рисунке 1 видно, что такой материал, как и немодифицированный TiO2, содержит поры и обладает развитой поверхностью.

Бактерии на поверхности анода образуют сеть из особых выростов (пилей), чтобы эффективнее присоединяться к подложке и друг к другу (рисунок 2). Не исключено, что через пили осуществляется перенос и избыточных электронов – по крайней мере, пили некоторых металл-восстанавливающих бактерий обладают проводящими способностями. Для E.coli вопрос о роли пилей в передаче электронов в настоящий момент недостаточно изучен. Однако в случае, когда клетки кишечной палочки просто растили в растворе электролита, формирование пилей не наблюдалось.

Производительность композитного анода PANI/TiO2 изучали в электрохимической ячейке, состоящей из двух камер, разделенных протон-проводящей мембраной. Анод был погружен в 0,1 М фосфатный буфер, содержащий 55 мМ глюкозы, 5 мМ 2-гидрокси-1,4-нафтохинона и клетки E.coli (109 мл-1); электролит катода состоял из 0,1 М фосфатного буфера и 50 мМ [Fe(CN)6]3-. В течение первых 48 часов мощность ячейки возрастала (благодаря тому, что бактерии размножались), а затем выходила на плато и оставалась практически неизменной в течение 450 часов без дополнительного введения глюкозы или других питательных веществ. Через 500 часов после внесения клеток в электрохимическую ячейку мощность резко падала из-за истощения запасов глюкозы (рисунок 3).

Максимальная мощность такой ячейки составила 1495 мВатт/м2 (при этом плотность тока равна 3650 мА/м2, напряжение 410 мВ). Это в два раза превосходит мощность, которая достигалась в бактериальных топливных ячейках прежде, и это сильно вдохновляет исследователей.

Работа «Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells» опубликована в ACS Nano.


Источник: ACS Publications




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Год  Петуха
Год Петуха

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Наногибриды сражаются с опасными бактериями в клетках человека. Активный гидродинамический плащ-невидимка. Кобальтсодержащие фуллереновые комплексы для водородных накопителей.

Взгляд в Наномир! В контакте!
Как увидеть атомы, молекулы и вирусы?
Как детально рассмотреть объекты живой природы масштаба НАНО?
Принцип действия и из чего состоит атомно силовой микроскоп.
Обо всем об это расскажет профессор МГУ имени М.В.Ломоносова, руководитель компании Центр перспективных технологий, автор более 200 работ по зондовой микроскопии – Яминский Игорь Владимирович.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Новые 3D пористые наноуглеродные материалы из панцирей морских крабов. Клапан без клапана: как идёт воздух в лёгких у птиц. Углеродные фуллертрубки: от полупроводников до металлов. Механическое напряжение и
поверхностное натяжение скирмионов.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2021
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 8, 9, 10 и 11 июня 2021 г. Начало защит в 11.00. Защиты пройдут с использованием дистанционных образовательных технологий.

Академик Е.Н. Каблов: «Для освоения космоса нужны новые материалы»
Янина Хужина
В этом году весь мир отмечает 60-летие первого полета человека в космос. Успех миссии Юрия Гагарина стал возможен благодаря слаженной работе многих людей: физиков, математиков, конструкторов, инженеров-проектировщиков и, конечно, материаловедов. «Научная Россия» обсудила с академиком РАН Евгением Кабловым основные вехи в развитии космического и авиационного материаловедения.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2021 году
коллектив авторов
25 - 28 мая пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.