Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Фрагмент графеновой наноленты
Рис. 2. Стабильность спин-поляризованного и не спин-поляризованного состояний при комнатной температуре в координатах Ω, λ, Vds.
Рис. 3. Стабильность спин-поляризованного и не спин-поляризованного состояний при комнатной температуре в координатах Ω, Vds.

Графеновые ленты для создания запоминающих устройств

Ключевые слова:  графен, запоминающее устройство, периодика

Опубликовал(а):  Уточникова Валентина Владимировна

04 декабря 2007

Графен начал привлекать внимание с тех пор, как было показано, что он стабилен во внешней среде. Причем наибольшее внимание привлекают именно графеновые наноленты из-за потенциальной возможности их применения в таких устройствах, как полевые транзисторы. К тому же было показано, что наноленты с зигзагообразными концами (рис. 1), где к sp2-атомам углерода присоединены атомы водорода, проявляют полуметаллические свойства в присутствии поперечного электрического поля, делая возможным их использование в спинтронике. Кроме того, расчет функционала плотности предсказывает, что в состоянии равновесия такие ленты с зигзагообразными концами в равновесии спин-поляризованы. Однако недавно было показано, что это состояние может быть изменено при протекании баллистического тока через наноленты в случае, если приложенное напряжение превосходит некую пороговую величину. Снятие напряжения приводит к возвращению системы в спин-поляризованное состояние. Эти состояния могут являться битами в бинарной системе хранения информации, состояние которых можно изменять за счет приложенного напряжения. Для считывания информации предлагается пропускать ток через устройство.

Зависимость большого термодинамического потенциала от приложенного напряжения показана на рис. 2, 3 (λ =-2.6 eV = эффективный обменный интеграл). Ω – большой термодинамический потенциал на один углеродный атом графеновой наноленты с зигзагообразным краем, отложен против приложенного напряжения, Vds, и λ, где λ=±1 и 0 соответствует спин-поляризоанному и не спин-поляризоанному состояниям, соответственно. При Vds=0 неполяризованное состояние нестабильно (локальный максимум). В интервале 0.04 - 0.15 |λ|/e стабильны оба состояния. Выше/ниже этого интервала спин-поляризованное/не спин-поляризованное состояние перестает быть стабильным и система переходит в не спин-поляризованное/спин-поляризованное состояние. При снятии напряжения, система возвращается в спин-поляризованное (красная линия на рис. 3) или не спин-поляризованное (синяя линия) состояние, в зависимости от начальной точки.

Однако был также обнаружен интервал напряжений (Vds10 и Vds01, 0 относится к спин-поляризованному, а 1 – к не спин-поляризованному состоянию), в котором существуют оба состояния. Выход за пределы этого интервала позволяет либо зафиксировать, либо стереть информацию в устройстве. Поскольку оба состояния микроскопичны, устройство может работать и при комнатной температуре. Любые малые флуктуации гасятся в электрическом поле. Впоследствии ожидается, что такое запоминающее устройство будет статичным. Вследствие того, что спин-поляризованное и не спин-поляризованное состояния имеют резко различные транспортные свойства, ожидается, что в вольтамперной характеристике будет присутствовать петля гистерезиса.

Уточникова Валентина Работа Graphene Nanostrip Digital Memory Device опубликована в Nano Letters.


Источник: Nano Letters



Комментарии
Гольдт Илья Валерьевич, 04 декабря 2007 11:35 
наверно, имеется в виду не "расчет функционала плотности", а "расчет методом функционала плотности"
Гольдт Илья Валерьевич, 04 декабря 2007 11:39 
и наверно, правильнее говорить "спин-неполяризованное" вместо "не спин-поляризованное"
Кстати, а температура какая там была? Гелий или еще ниже?
Трусов Л. А., 04 декабря 2007 12:53 
да и вообще очень нанопопулярненько
Комнатная, там вроде написано =)
(если не тут, то в статье)
Трусов Л. А.
к сожалению, многие статьи на такие темы сегодня пишутся "нанопопулярненько"
Не плачьте =)

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Магнитные жидкости в ИГЭУ
Магнитные жидкости в ИГЭУ

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Органику с серой удалось додавить до сверхпроводимости при почти комнатной температуре. Муаровый узор диаманов. Размер наночастиц золота определяет их воздействие на клеточную мембрану. Спиновая структура хирального кристалла или ежик в зазеркалье. Ещё один повод накрасить губы. Нобелевская премия 2020.

Наносистемы: физика, химия, математика (2020, Т. 11, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume11/11-5
Там же можно скачать номер журнала целиком.

Территория STEM 2020
20 ноября в онлайн-формате состоится ежегодная конференция проекта "Стемфорд" - Территория STEM 2020. Тема 2020 года - "Подготовка инженеров будущего: партнерство образования, науки и бизнеса".

Заочная Нанотехнологическая Школа
коллективистскими авторов
Заочная нанотехнологическая школа (сокращенно ЗНТШ) проходит в рамках юбилейной, XV, Всероссийской Интернет-олимпиады по нанотехнологиям «Нанотехнологии – прорыв в будущее!» и предваряет начало конкурсов ее заочного отборочного тура. Организаторами ЗНТШ выступают Московский государственный университет имени М.В.Ломоносова и Фонд инфраструктурных и образовательных программ (группа РОСНАНО). Целью ЗНТШ является подготовка участников XV Всероссийской олимпиады по нанотехнологиям для успешного выступления на состязаниях по комплексу предметов «химия, физика, математика, биология», в конкурсе проектных работ школьников и других конкурсах Олимпиады.

Нобелевская премия за графен, или 10 лет спустя
Алексей Арсенин
О том, как графен повлиял на развитие науки и промышленности и можно ли его назвать материалом будущего — заместитель директора Центра фотоники и двумерных материалов МФТИ, кандидат физико-математических наук Алексей Арсенин

Летние лектории для школьников
ФНМ
Сотрудники Факультета наук о материалах и химического факультета Московского государственного университета имени М.В.Ломоносова участвуют в лекториях двух летних школ, организованных Фондом Инфраструктурных и Образовательных Программ (группа РОСНАНО) - Нанограде и летней школе МФТИ.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.