Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. Схематическое изображение основных стадий SuNS.
Рисунок 2. Наноразмерные ячейки отпечатка ДНК-чипа (STM).
Рисунок 3. Сравнение Функций радиального распределения образца (синяя линия) и отпечатка (красная линия) ДНК-наночипа.

Супрамолекулярная нанопечать

Ключевые слова:  ДНК, микрочип, нанопечать, периодика

Опубликовал(а):  Трусов Л. А.

30 октября 2007

ДНК-микрочипы позволяют анализировать огромное число генетических особенностей в одном образце исходного материала. При этом желательно, чтобы ДНК-чипы обладали двумя свойствами, которые в некотором смысле противоречат друг другу. С одной стороны, интересно в одном ДНК-чипе иметь как можно больше ячеек, чтобы получить больше информации об изучаемом образце. В то же время, исследователи зачастую вынуждены работать с очень малыми объемами биологического материала, поэтому чем меньше размер ДНК-чипа, тем лучше.

Современные методы (например, атомно-силовая микроскопия, AFM) позволяют детектировать сигнал в ячейках ДНК-чипа, когда их размеры составляют несколько десятков нанометров. Методы производства таких ДНК-чипов основаны на литографии (наиболее привлекателен метод dip-pen нанолитографии, DPN). Создание чипов со столь маленькими ячейками обычно весьма дорого и занимает много времени.

Группа ученых из США и Кореи предложила способ более дешевого, быстрого и массового производства ДНК-микро- и наночипов. Исследователи показали, что, взяв один ДНК-чип в качестве образца, можно за один шаг отпечатать чип, комплементарный исходному. Такой способ получения ДНК-чипов назван методом супрамолекулярной нанопечати (supramolecular nanostamping, SuNS) и схематически представлен на рисунке 1.

В качестве образца ученые взяли массив из одноцепочечных ДНК, пришитых к наночастицам золота, в котором размер ячейки составлял 9±2 нм, а расстояние между ячейками 77±9 нм. К этому ДНК-чипу добавили комплементарную ДНК, модифицированную гексилтиолом на 5’-конце. После гибридизации (то есть связывания комплементарных цепей ДНК) на чип-образец поместили стеклянную подложку, покрытую золотом. Комплементарные цепи ДНК присоедились к этой новой подложке. Затем при 90 °С была осуществлена дегибридизация, и в итоге получен отпечаток, комплементарный исходному образцу.

Исследовав полученную копию, ученые пришли к выводу, что отпечаток сделан успешно: на новом ДНК-чипе имелись ячейки размером 14±2 нм, разделенные 77±10 нм промежутками (рисунок 2). Чтобы показать, что расположение ячеек в массиве одинаково для образца и отпечатка, была рассчитана функция радиального распределения для обоих случаев (рисунок 3). Видно, что функции получились довольно похожи.

В дальнейшем необходимо показать, что SuNS пригодна для печати многокомпонентных чипов и для производства многих копий с одного образца без потери точности. Исследователи верят, что смогут продемонстрировать это в ближайшем будущем.

Работа «Application of supramolecular nanostamping to the replication of DNA nanoarrays» напечатана в журнале Nano Letters.


Источник: ACS Publications



Комментарии
Красивая идея.
С ходу видны несколько проблем:
Сшивание тиольных хвостов и удвоение одноцепочечной ДНК. (но это сравнительно легко предотвратить ДТТ)
Из-за близкого расположения привитых нитей ДНК возможны ошибки при гибридизации...

Ещё интересно, они гнали модельную ДНК или более-менее реальную смесь из 10 - 50 олигонуклеотидов?
Угу, у них была более-менее реальная ДНК, соответствующая фрагменту мРНК человеческой фосфофруктокиназы. Но все фрагменты были одинаковы. Они ж говорят, что многокопмонентные системы - это планы на будущее.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Самозалечивающийся пузырь
Самозалечивающийся пузырь

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Пластырь по мотивам колючек кактуса быстро и эффективно собирает капли пота для анализа. Как нож сквозь масло, или секреты резки полимеров. Алмазное стекло из фуллеренов. Есть только миг: метаморфозы антиферромагнитного кристалла в терагерцовом импульсе. Лазерная нарезка струи или оптофлюидный резонанс.

С Новым годом!
Мы надеемся, что Новый год принесет всем удачи, новые достижения, откроет перспективы и сделает мир лучше. Поздравляем всех с Новым годом!

Наносистемы: физика, химия, математика (2021, Т. 12, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume12/12-6
Там же можно скачать номер журнала целиком.

Электронные материалы Заочной Научно - Технологической Школы - 2021
А.А.Семенова, Е.А.Гудилин, коллектив авторов
С 15 ноября по 15 декабря 2021 в рамках XVI Всероссийской Олимпиады "Нанотехнологии - прорыв в будущее!" проведено подготовительное мероприятие для потенциальных участников Олимпиады - Заочная Научно-Технологическая Школа (ЗНТШ'2021). В этой статье собраны основные факты и сборник электронных материалов ЗНТШ.

Десять лет перовскитной солнечной энергетики
Е.А.Гудилин , Mend Comm, А.Б.Тарасов, Н.Н.Удалова, А.А.Петров, другие авторы
Журнал Mendeleev Communications опубликовал виртуальный специальный выпуск «Ten years of hybrid perovskite photovoltaics and optoelectronics in the mirror of MAPPIC 2020 meeting»

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2021
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 8, 9, 10 и 11 июня 2021 г. Начало защит в 11.00. Защиты пройдут с использованием дистанционных образовательных технологий.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.