Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Изменение потенциала поверхности после добавления авидина четко показывает, что произошло связывание.
Удвоение сигнала при комплементарном связывании образца и ДНК-зонда.
В случае некомплементарного образца удвоение сигнала не наблюдается.
Ячейка ДНК-наночипа, изготовленная методом DPN (АСМ).

Метод зонда Кельвина открывает новые возможности для создания ДНК-наночипов

Ключевые слова:  АСМ, ДНК, ДНК-микрочип, нанолитография, периодика

Опубликовал(а):  Трусов Л. А.

02 октября 2007

Технология микрочипов широко применяется в генетических и молекулярно-биологических исследованиях. В настоящее время в микрочипах взаимодействие между целевой ДНК (интересующей нас ДНК) и иммобилизованным ДНК-зондом (пришитой к поверхности чипа одноцепочечной молекулой ДНК с известной последовательностью) детектируют при помощи флуоресцентной метки. Современные методы создания микрочипов позволяют наносить различные ДНК-зонды на подложку с субмикронной точностью, однако методы считывания подобной точностью не обладают, поэтому на практике используются ячейки размером около 10 мкм.

Технология визуализации поверхности, известная как метод зонда Кельвина (Kelvin probe force microscopy, KPFM), дает возможность изучать взаимодействия между биомолекулами, а в сочетании с методом dip-penнанолитографии (DPN) представляет собой аналог технологии ДНК-микрочипов. KPFM позволяет надежно детектировать сигнал при размерах ячейки 250 нм. Таким образом, речь идет уже о наночипах, в которых плотность ячеек в тысячу раз больше, чем в современных микрочипах.

В методе KPFM измеряется распределение поверхностного потенциала в исследуемом субстрате. Многие биологические молекулы имеют в своей структуре заряженные участки, например такие, как отрицательно заряженная сахарофосфатная основа молекулы ДНК. При формировании высокоспецифичных комплексов между молекулами происходит перераспределение плотности заряда. Изучая изменение потенциала поверхности образца, можно детектировать взаимодействие между биомолекулами.

Asher Sinensky и Angela Belcher из Massachusetts Institute of Technology (США) продемонстрировали, что KPFM является удобным и надежным методом считывания сигнала с белковых или ДНК-наночипов. К достоинствам метода относятся: высокое разрешение (< 10 нм), высокая чувствительность (< 50 нМ), высокая скорость сканирования образца (> 1100 мкм/с), возможность различать специфичные и неспецифичные взаимодействия между молекулами. Метод бесконтактный и не требует использования меток, что особенно важно для биологических систем.

Авторы работы представили две модельные системы, имитирующие основные типы биологических чипов. В первом случае изучали взаимодействие молекулы биотина и гликопротеина авидина, аналогичное взаимодействию «антитело-антиген». Биотин был иммобилизован на золотой подложке методом DPN. Изменение потенциала поверхности после добавления авидина четко показывает, что произошло связывание (рис. 1).

Во втором случае авторы исследовали применимость метода KPFM для детектирования ДНК-гибридизации – явления, лежащего в основе ДНК-чипов. В качестве ДНК-зондов ученые использовали 15-нуклеотидные одноцепочечные ДНК, содержащие фрагменты генов сибирской язвы в одном случае и малярии в другом. Согласно ожиданиям, в обоих случаях наблюдалось удвоение сигнала при добавлении образца ДНК, комплементарного ДНК-зонду (рис. 2), и не наблюдалось в случае некомплементарного (рис. 3).

Работа «Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy» была опубликована в Nature Nanotechnology (doi:10.1038/nnano.2007.293).


Источник: Nature Nanotechnology




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Оксидные горы, пирохлорные берега
Оксидные горы, пирохлорные берега

4 февраля объявили лауреатов V Всероссийской премии «За верность науке»
4 февраля в здании Минобрнауки РФ состоялась торжественное награждение лауреатов V Всероссийской премии «За верность науке». 11 научно-просветительских проектов были отмечены престижной наградой.

Всероссийский съезд учителей и преподавателей химии
5 февраля в Московском университете в Шуваловском корпусе МГУ состоится Всероссийский съезд учителей и преподавателей химии, посвященный Международному году Периодической таблицы химических элементов, начало - 10 часов.

II Всероссийский химический диктант пройдет 18 мая 2019 года
В 2019 году периодическому закону Дмитрия Менделеева исполнится 150 лет! В честь великого открытия этот год объявлен Международным годом Периодической таблицы химических элементов. Одним из наиболее ярких событий, приуроченных к этому году, станет II Всероссийский химический диктант, который пройдет 18 мая и который в этом году выходит на международный уровень. Мероприятие было анонсировано в рамках церемонии открытия Международного года Периодической таблицы химических элементов 29 января 2019 года в Париже, в штаб-квартире ЮНЕСКО.

Самые необычные таблицы Менделеева на выставке Международного года Периодической таблицы химических элементов

6-8 февраля в Российской академии наук состоялось торжественное открытие Международного года периодической таблицы химических элементов в России и приуроченная к этому масштабная интерактивная выставка

Почувствовать живое...
Е.А.Гудилин, А.А.Семенова, Н.А.Браже
Неразрушающее исследование живых клеток и клеточных структур является в настоящее время важным направлением научных изысканий, которые во многих зарубежных и российских научных группах направлены на достижение вполне прагматической цели – разработку новых принципов биомедицинской диагностики и эффективных подходов в нарождающейся персональной медицине.

Российская газета: Перевернуть пирамиду. Президент РАН: как повысить наши шансы на Нобеля
Юрий Медведев
Почему Россия по числу Нобелей отстает от ведущих стран мира, уступая, например, даже маленькой Швейцарии? Замалчиваются ли достижения отечественных ученых? Почему без привлечения в науку российского бизнеса мы не сможем успешно конкурировать в борьбе за престижную научную премию? Об этом корреспондент "РГ" беседует с президентом РАН Александром Сергеевым, который побывал в Стокгольме на вручении Нобелевских премий и поделился своими впечатлениями.

Инновационные системы: достижения и проблемы
Олег Фиговский, Валерий Гумаров

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.