Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1а. AFM изображение полученного кристалла квантовых точек.
Рис. 1б. TEM изображение полученного кристалла квантовых точек. Видно, что упорядочение происходит как в горизонтальной плоскости ,так и вертикально.
Рис. 2. Показано узкое распределение квантовых точек по размерам: диаметр (красный) и длина (зеленый) кристаллитов.
Рис. 3. Изоэнергетические поверхности электронов и дырок одной из квантовых точек.

Суперупорядоченные квантовые точки для квантовых компьютеров

Ключевые слова:  квантовые точки, молекулярно-лучевая эпитаксия, периодика, самоорганизация, упорядоченные структуры

Опубликовал(а):  Уточникова Валентина Владимировна

11 октября 2007

Квантовые точки (Quantum Dots, QDs), также иногда называемые синтетическими атомами, - это пространственно ограниченный во всех трех направлениях фрагмент проводника или полупроводника, размеры которого настолько малы, что делают существенными проявление квантовых эффектов. Их можно описать, как частицы в трехмерной потенциальной яме. При этом, в отличие от настоящих атомов, частотами люминесцентных переходов квантовых точек можно легко управлять, просто меняя размеры кристаллов. Квантовые точки являются основными кандидатами для представления кубитов в квантовых вычислениях, кроме того, уже существует программа по созданию на их основе дисплеев.

Одним из наиболее популярных способов получения квантовых точек является их формирование в "двумерном электронном газе", где они уже ограничены в одном направлении. Другим возможным методом является метод самоорганизации Странски-Крастанова (SK метод). При этом первый метод позволяет получать только двумерные и небольшие по площади массивы квантовых точек, а второй приводит к очень большому разбросу размеров частиц. Поэтому особое внимание сейчас привлекает метод темплатной самоорганизации как один из способов получения упорядоченных массивов квантовых точек, молекул и кристаллов. Метод соединяет преимущества top-down ("сверху-вниз", "разборки") техники литографии с bottom-up ("снизу-вверх", сборки) возможностями самоорганизации.

С точки зрения спинтроники и даже создания квантовых компьютерных систем особый интерес представляет система Si/Ge, которая и заинтересовала Detlev Grützmacher с коллегами. Для быстрого получения больших площадей хорошо упорядоченных темплатов они предлагают использовать интерференционную литографию с применением жесткого ультрафиолета (EUV-IL). На подложки Si(100) наносили двумерные массивы отверстий методом реактивного ионного травления, после чего методом молекулярно-лучевой эпитаксии на эти подложки наносили квантовые точки Ge, которые упорядочивались как в горизонтальном, так и в вертикальном направлении. Рентгеновская дифрактометрия и атомно-силовая микроскопия выявила, что степень упорядочения полученной структуры и узость разброса размеров квантовых точек превосходит таковые для полученных на сегодняшний день структур. Была также продемонстрирована низкая плотность дефектов в трехмерной структуре кристаллических квантовых точек SiGe. Для этого был снят спектр межзонной фотолюминесценции вплоть до комнатной температуры, который совпадал с теоретически рассчитанным. При этом теоретическая зонная структура была рассчитана исходя из известных по данным рентгеновской дифрактометрии и атомно-силовой микроскопии концентрации германия и формы квантовых точек. Расчет показал, что зонная структура кристалла сильно модифицирована из-за искусственной периодичности. Расчет вариаций собственной энергии, основанный на статистической вариации размеров квантовых точек, определенной экспериментально (±10% для линейных размеров), показал, что рассчитанное электронное связывание между соседними точками не разрушается при вариации размеров квантовых точек. Таким образом, трехмерно упорядоченные квантовые точки можно рассматривать как новый синтетический материал не только с точки зрения строения, но и в отношении его зонной структуры.

Уточникова Валентина


Источник: Nano Letters



Комментарии
Все-таки Детливу не хватает Странски-Крастанова для получения квантовых точек. Разрушая ионным травлением кремний, наверное, тяжело будет получить кристалл под компьютер?
Ну они, вроде, пока за высокую упорядоченность бьются и вроде ее даже достигают...
А вообще да, мне SK был бы больше по душе, если им можно такой же малый разброс получать...

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Морзянка
Морзянка

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
А.А.Семенова
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.