Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Микрофотографии пористого диоксида титана: a) Поверхность пленки, окисленной при 20В; b) Поверхность металла после отделения пленки TiO2; c) Поверхность пленки, окисленной при 30В; d) Поверхность металла после отделения этой пленки TiO2.
Поверхность пленки пористого диоксида титана (вид сверху).
Микрофотография скола пленки диоксида титана, окисленной при 60В в электролите, содержавшем этиленгликоль (чистота титана 99,99%).

"Мезопористый" - значит лучший

Ключевые слова:  диоксид титана, мезопористые системы, периодика

Опубликовал(а):  Гудилин Евгений Алексеевич

17 апреля 2007

Диоксид титана TiO2, тоннами использующийся в титановых белилах, - на самом деле более "умный", полезный, просто уникальный материал, обладающий удивительными физическими и химическими характеристиками, которые до конца не исследованы до сих пор. Наиболее интересными с точки зрения практического применения диоксида титана являются его сенсорные и каталитические свойства. Так, на поверхности TiO2 могут быть окислены до CO2 и H2O практически любые органические соединения, поэтому создание на основе диоксида титана фотокатализаторов для очистки воды и воздуха от токсичных органических веществ - важнейшая и весьма реальная прикладная задача.

Исследования по данной теме активно проводятся в течение последних 10-15 лет. В период с 1993 по 2001 г. было проведено шесть международных конференций, посвященных методу фотокаталитической очистки, на которых приводились примеры его опытно-промышленного применения для очистки воздуха на заводе по производству взрывчатых веществ, в цехах предприятий микроэлектроники, в салонах самолетов фирмы «Боинг», в жилых городских помещениях и тоннелях, в больницах для подавления патогенной микрофлоры в воздухе, при лечении аллергических заболеваний и астмы, в фармацевтических производствах, а также при уничтожении боевых отравляющих веществ. Фотокатализаторы на основе диоксида титана также могут применяться для создания самоочищающихся покрытий.

Диоксид титана прозрачен для видимого света, поэтому тонкие пленки из TiO2, нанесенные на стекло, будут незаметны для глаза. А само стекло, покрытое пленкой TiO2, под действием солнечного света способно очищаться от органических загрязнений. Кроме того, стекло, покрытое пленкой TiO2, не будет запотевать. Запотевание обычно связано с плохой смачиваемостью поверхности стекла, на которой образуются мелкие капли воды, рассевающие свет. Если же покрыть поверхность стекла тонкой пленкой оксида титана, то органические загрязнения, адсорбированные на поверхности стекла, будут окисляться под действием света, и поэтому роса, осевшая на такое стекло, не собирается в капли, а будет растекаться по поверхности, а затем просто испаряться. Кроме того, оксид титана с нанесенными на него наночастицами золота можно использовать в качестве катализатора, окисляющего угарный газ из выхлопов автомобилей, в шахтах, в противогазах - и все это происходит уже при комнатной температуре!

Сейчас одним из наиболее популярных объектов исследований являются нанотрубки на основе диоксида титана и титановых бронз. Оказывается, однако, что не менее, а даже более интересным объектом являются пленки мезопористого диоксида титана, которые формируются в результате процессов самоорганизации при анодном окислении поверхности титана в средах различных жидких электролитов. Их преимущество заключается в том, что они "иммобилизированы" (закреплены) на поверхности (хотя могут быть отделены от нее химическими способами и тем самым превращены в тонкую пористую мембрану). Кроме того, такие пленки обладают высокой площадью поверхности, так как состоят из цилиндрических пор. Такая ажурная архитектура приводит к тому, что пленки выполняют все те функции, которые были известны до сих пор для других форм диоксида титана, но делают это часто гораздо эффективнее и не загрязняют своим материалом реакционную зону. Дополнительным преимуществом пленок является также то, что путем варьирования условий получения можно добиться не только желаемого диаметра пор, но и однородного распределения пор по размерам, а также и их локального упорядочения. В идеале получается квазиупорядоченная структура из пор одинакового диаметра, которая может выступать в роли "фотонных кристаллов", массива "одномерных нанореакторов", "сит" наночастиц и пр.

Эти работы в настоящий момент успешно проводятся на Факультете Наук о Материалах МГУ им. М.В. Ломоносова.


Источник: ФНМ МГУ




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Человечек наномира
Человечек наномира

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Броуновское движение скирмионов.Растягиваем графен правильно. Красное вино, кофе и чай помогают создавать материалы для гибкой носимой электроники. Металлическая природа кремния и углерода.

К 2023 году российские химики могут занять 4-е место в мире
Эксперты отметили рост числа научных публикаций отечественных ученых и сообщили, что к 2023 году российские химики могут занять 4-е место в мире по публикационной активности.
27 – 29 ноября в рамках юбилейных мероприятий Химического факультета МГУ и торжественной церемонии закрытия Международного года Периодической таблицы химических элементов эксперты подвели итоги 2019 г.

Итоги Менделеевского Года
28 ноября в Фундаментальной библиотеке МГУ состоялось торжественное закрытие Международного года Периодической таблицы химических элементов Д.И.Менделеева.

Константин Жижин, член-корреспондент РАН: «Бор безграничен»
Наталия Лескова
Беседа с К.Ю. Жижиным, заместителем директора Института общей и неорганической химии им. Н.С. Курнакова по научной работе, главным научным сотрудником лаборатории химии легких элементов и кластеров.

Мембраны правят миром
Коллектив авторов, Гудилин Е.А.
Ученые МГУ за счет детального изучения структурных и морфологических характеристик материалов на основе оксида графена и 2D-карбидов титана, а также моделирования их свойств, улучшили методы создания мембран для широкого круга практических применений.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.