Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Структура манганитов семейства Ca(Mn,Cu)7O12
Рис.2. Схема фазовых соотношений, политермическое
сечение CaMn7O12 – CaCu3Mn4O12 в кислороде
Рис.3. Магнеторезистивные свойства CaCuMn6O12

Знакомые незнакомцы: медь-содержащие КМС манганиты

Ключевые слова:  магнеторезистивные материалы , манганит, периодика, эффект гигантского магнетосопротивления

Автор(ы): Гудилин Евгений Алексеевич, Иткис Даниил Михайлович, Померанцева Е. А.

Опубликовал(а):  Иткис Даниил Михайлович

11 февраля 2007

Открытие эффекта гигантского магнетосопротивления (ГМС) повлекло за собой стремительный поиск и изучение обладающих им материалов в связи с возможностью их применения в устройствах нового поколения для считывания и хранения информации, а также сенсорах магнитного поля.

Технология производства современных головок для считывания магнитной записи в компьютерных жестких дисках уже сейчас активно использует магнеторезистивные материалы на основе многослойных металлических сплавов. Кроме того, существуют и другие перспективы примениния в различных областях: от создания магнитной оперативной памяти (IBM, Motorola) и производства устройств, снижающих шумы в коммуникационных сетях, до измерения линейных углов между предметами по средствам магнитного поля и специальных сенсоров (Philips).

Спустя некоторое время в семейсве манганитов с общей формулой Ln1- xAxMnO3 (Ln – РЗЭ, A – щелочной или щелочно- земельный элемент), имеющих структуру перовскита, был обнаружен эффект падения сопротивления во внешнем магнитном поле. По ставнению с многослойными металлическими материалами, где сопротивление плавно увеличивается с понижением температуры в манганитах имеется максимум на температурной зависимости магнетосопротивления, лежащий в области ферро-/антиферромагнитного упорядочения. Детальное исследование эффекта позволило предположить, что для этого класса материалов основным механизмом преноса заряда является механизм двойного обмена Mn3+-O-Mn4+. Ввиду специфических особенностей эффекта в манганитах, он получил название эффекта колоссального магнетосопротивления (КМС). Позже были обнаружены и другие семейства материалов, обладающих эффектом КМС: La1-xAxCoO3, халькогениды на основе хрома, семейство пирохлора Tl2Mn2O7 и др.

Одним из недавних успехов в области изучения КМС материалов было открытие нового семейства манганитов CaCuxMn7-xO12 [1-3], обладающего рядом преимуществ по сравнению с ранее изученными системами: для этого семейства характерана большая чувствительность к изменению магнитного поля даже при невысоких его значениях и лучшая температурная стабильность эффекта, что, несомненно, жизненно важно для будущих практических применений.

Твердый раствор CaCuxMn7-xO12 относится к соединениям со структурой двойного искаженного перовскита AA'3B4O12 (Рис.1). Эта интересная структура может быть представлена в виде каркаса, состоящего из октаэдров BO6, которые при сочленении вершинами образуют туннели, в которых размещаются катионы A и A’. При этом происходит наклон октаэдров BO6 по сравнению с положением в структуре идеального перовскита, за счет чего образуются две позиции с различным окружением: 12-ти координированная позиция A, занимаемая катионами Ca2+ и более искаженная позиция A' с координацией 4+4+4, в которой находятся Ян- Теллеровские катионы Mn3+ и Cu2+. В отаэдрах BO6 расположены катионы Mn3+ и Mn4+, причем с ростом степени замещения марганца на медь количество Mn4+ растет.

Синтез соединений в системе Ca-Mn-Cu-O затруднен и проводился до сих пор в запаянных ампулах или в автоклавах. Рассмотрев «за» и «против», в лаборатории неорганического материаловедения Химического факультета МГУ была предпринята оказавшаяся успешной попытка систематического изучения области существования этого перспективного твердого раствора [2, 3]. Как было достаточно быстро установлено, для его синтеза нет необходимости использовать «неудобные методы» ампульного синтеза или синтеза под высоким давлением. Все дело оказалось, как всегда, в правильном выборе реагентов и организации реакционной зоны! Так, было установлено, что составы вплоть до степени замещения x=1.5 можно получить простым отжигом таблеток, полученных из Рис.3. Магнеторезистивные свойства CaCuMn6O12 предварительно гомогенизированных порошков с добавлением 10 масс.% минерализатора (KCl), в токе кислорода (рис.2).

К сожалению, полученные таким способом образцы обладали довольно пористой микроструктурой, что делает из непригодными для измерения магнеторезистивных свойств. Применение методики «теплого» прессования (при 250-400°С) механоактивированных образцов (1-2 часа помола в микромельнице планетарного типа) оказалось именно тем решением проблемы, которое привело к успеху, то есть к получению плотной керамики, гарантирующей большую плотность межзеренного контакта. В результате было достигнуто рекордное для данного класса КМС манганитов магнетосопротивление -58% при температуре 35К в поле 5Т (рис.3). Сообщаемые ранее значения не превышали -30% даже при более низких температурах [1]. Температурная зависимость магнетосопротивления для твердого раствора CaCuxMn7-xO12 не обладает максимумом в области магнитного упорядочения в отличие от хорошо изученных (Ln,A)MnO3 фаз. Скорее всего, магнетосопротивление осуществляется не по механизму двойного обмена, а является так называемым туннельным магнетосопротивлением (ТМС), поэтому микроструктурная организация материала оказывается архиважной. В этом смысле рассматриваемые манганиты и ВТСП – товарищи по несчастью. И не только потому, что оба семейства содержать «капризную» медь, но еще и потому, что оба требуют наличия хорошо развитых фазовых контактов, а еще лучше – двуосного текстурирования. Однако, для керамических КМС – манганитов этот путь еще не пройден. Будем надеятся...

Литература:

  1. Z. Zeng, M.Greenblatt, J.E. Sunstrom, M.Croft, S.Khalid // J. Sold State Chem. v.147, pp. 185-198 (1999).
  2. Е.А.Померанцева, Д.М.Иткис, И.А.Пресняков, Е.А.Гудилин, Дж.Хестер, Н.Н.Олейников, Ю.Д.Третьяков, ЛОКАЛЬНАЯ СТРУКТУРА КАРКАСНЫХ МАНГАНИТОВ Ba6Mn24O48 и CaMn7O12, ДАН, 2002, т.387, н.2, с.311
  3. 3. Е.А.Померанцева, Д.М.Иткис, Е.А.Гудилин, М.В.Макарова, М.В.Лобанов, Н.Н.Олейников, Ю.Д.Третьяков, Синтез и свойства твердого раствора CaCuxMn7-xO12 с колоссальным магнетосопротивлением, Доклады Академии Наук, 2003, т.388, н.3.



Средний балл: 9.0 (голосов 1)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Благородные опалы: бублик и стручок
Благородные опалы: бублик и стручок

Разминочные викторины по предметам стартовали на Наноолимпиаде
ХIV Всероссийская олимпиада по нанотехнологиям началась. Мы открыли впервые за 13 лет отдельные тесты для школьников по основным предметным направлениям - химии, физике, математике, биологии. Это первые (новые) официальные конкурсы олимпиады, фактически, разминка, дальше будет больше и интереснее...

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»:Динамическое термоодеяло по мотивам кожи кальмара. Газоанализатор на висмутене. Фуллерены для Тиффани. Магнетизм доменной стенки в сегнетоэлектрике или магнитоэлектрическая “сказка наоборот”. 100-летний юбилей академика Исаака Марковича Халатникова. Нобелевская премия 2019.

"Новые нанотехнологии" для "Кванториума"
Новая образовательная программа по основам нанотехнологий разработана для детских технопарков «Кванториум»

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.