Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Мощный и легкий: материалы для аккумуляторов

Ключевые слова:  источники тока, литий-ионные аккумуляторы

Автор(ы): О. А. Дрожжин, Д. Иевлева

Опубликовал(а):  Палии Наталия Алексеевна

09 октября 2019

В большинстве современных гаджетов используются литийионные аккумуляторы. От того, из каких материалов сделан аккумулятор, зависит, насколько легким, эффективным, долговечным и надежным будет этот источник тока.

В литийионном аккумуляторе есть катод из оксида или соли (например, фосфата), содержащий ионы лития, электролит (раствор, содержащий растворимые соли лития) и отрицательный электрод (например, графит). Электроды можно сделать из разных материалов, что влияет на емкость аккумулятора и другие его характеристики. Благодаря разработкам новых материалов аккумуляторы становятся более энергоемкими, надежными и дешевыми.

Новые катоды

Поучительный пример из истории развития литийионных аккумуляторов — это материал LiFePO4, литий-железо-фосфат. Впервые он был предложен в 1997 году Джоном Гуденафом (от ред. лауреат Нобелевской премии по химии 2019 года) как катод для литийионного аккумулятора. Но тогда к этому предложению отнеслись с большой долей скепсиса, если не с юмором, потому что этот материал — диэлектрик, его проводимость — 10-9 сименс на сантиметр, и у него очень низкий коэффициент диффузии лития — это довольно слабые показатели для катодного материала. В то время все источники тока работали на оксидных катодах, а у оксидов проводимость гораздо выше, чем у LiFePO4. В девяностые производители аккумуляторов отказались использовать литий-железо-фосфат, и несколько лет его не рассматривали всерьез как материал для катодов.

Спустя восемь лет после изобретения LiFePO4 другой группой ученых было предложено решение, как увеличить электропроводность этого материала — сделать композит, уменьшив размер частиц и максимально ровно покрыв их слоем углерода толщиной в несколько нанометров — LiFePO4/C. Это было очень новаторское решение: углерод, разумеется, не является литийионным проводником, и тот факт, что тонкий слой аморфного углерода не будет препятствовать интеркаляции лития, был поначалу вовсе не очевиден. Создание наночастиц тогда тоже вызывало вопросы, потому что оксид, тот же LiCoO2, в форме наночастиц начинает очень бурно реагировать с электролитом, и это может привести к нежелательным последствиям. Здесь же оказалось, что материал абсолютно стабилен по отношению к электролиту. Как ни уменьшай частицу, он будет стабилен, и никаких побочных реакций не возникнет. Он даже не выделяет газы при первом заряде аккумулятора, что характерно для оксидных материалов.

Уменьшение размеров частицы привело к тому, что низкий коэффициент диффузии лития стал не так важен. Создание композита — покрытие углеродом — позволило на порядки улучшить электропроводные свойства материала: проводимость такого композита где-то 10-1 сименс на сантиметр.

Этот метод стал использоваться для создания огромного количества материалов для литийионных, натрийионных, калийионных аккумуляторов и других источников тока. Это оказалось очень удобно: не нужно специально создавать композит и покрывать его чем-то, просто добавляем в ходе синтеза недорогую органику, потом отжигаем в инертной атмосфере, и углерод, который образуется при таком отжиге, не дает частицам расти, инкапсулирует их. Получается ядро из активного материала внутри углеродной матрицы.

Сейчас аккумуляторы на основе LiFePO4 — это высокомощные устройства повышенной безопасности с хорошим циклированием, потому что они гораздо более стабильны, чем на основе оксидов. Такие аккумуляторы широко используются на электротранспорте — например, скутерах, катерах и автомобилях, складской технике и в системах автономного электроснабжения. В России производством литийионных аккумуляторов на основе литий-железо фосфата занимается компания ЛИОТЕХ.

Идеальный материал для аккумуляторов

У хорошего материала для аккумулятора должна быть маленькая молярная масса. Есть соотношение между количеством молей вещества и количеством запасаемого заряда, и по закону Фарадея чем больше моль вещества, тем больше мы сможем запасти электронов. Таким образом, нужна минимальная молярная масса. В этом смысле, если выбирать, условно говоря, между фторидом и бромидом лития, фторид гораздо более выгоден, потому что у него молярная масса гораздо меньше. У LiFePO4 молярная масса средняя, и теоретическая емкость получается 170 миллиампер-час на грамм. Это нормально, не много и не мало.

У хорошего материала для катодов должна быть хорошая проводимость по ионам лития — высокий коэффициент диффузии — и высокая элетропроводность. Даже если у самого вещества плохая проводимость, это решается уменьшением размера частиц и созданием композита с углеродом.

Материал должен быть устойчив к интеркаляции и деинтеркаляции лития — обратимому внедрению ионов лития в его струкутру. Например, на кафедре электрохимии химического факультета МГУ мы несколько лет назад развивали материал, который в теории мог бы в полтора раза повысить энергоемкость литийионных аккумуляторов, — LiCoBO3. Емкость и потенциал у него выше, чем у LiFePO4. Мы начали синтезировать наночастицы, покрытые углеродом, но выяснилось, что материал нестабилен. Как только мы начинаем извлекать из него литий, он сразу аморфизуется — в делитированном состоянии CoBO3 просто не существует. Несмотря на теоретические возможности сильно улучшить свойства аккумулятора, мы ничего не добились, потому что не смогли сделать процесс обратимым: получилось что-то вроде первичного источника тока.

Нужно предусмотреть и то, как материал будет вести себя по отношению к электролиту: он должен быть очень плохим катализатором разложения электролита. Если электролит разлагается на поверхности частиц материала, то, во-первых, продукты его разложения увеличивают сопротивление системы, а во-вторых, рано или поздно электролит просто закончится. Например, LiCoPO4 сам по себе относительно стабилен, у него те же свойства, что у LiFePO4, но кобальт в этом фосфате активен по отношению к окислению электролита. Если железо очень плохой катализатор окисления, кобальт — слишком хороший катализатор, поэтому работать намного удобнее с LiFePO4, а литийионная ячейка с LiCoPO4 деградирует буквально за несколько циклов.

Потенциал материала определяет энергоемкость аккумулятора. Если у катодного материала потенциал меньше 3 В, он никому не нужен. Если потенциал больше 4,5 В, к материалу относятся настороженно: высокий потенциал сам по себе может инициировать разложение электролита. Эту проблему можно решить с помощью направленного дизайна морфологии. Например, у литий-никель-марганцевой шпинели LiNi0,5Mn1,5O4 рабочий потенциал около 5 В — это высоковольтный материал, пока еще не применяемый, но с хорошими перспективами. Выяснилось, что в зависимости от того, какую форму будут иметь частицы — куба, октаэдра или какой-то более сложной фигуры, — получатся разные параметры деградации, то есть разные степени взаимодействия с электролитом у разных кристаллографических граней материала. Такая комбинация кристаллохимических и синтетических подходов может позволить улучшить свойства материала и его стабильность по отношению к электролиту.

Как разрабатывают новые материалы

Обычно разработчики мыслят аналогиями. Например, материал, послуживший прообразом LiFePO4, — минерал оливин, и это силикат, а не фосфат: MgMnSiO4.

Казалось бы, какая связь между LiFePO4 и MgMnSiO4? Имея богатый опыт в кристаллохимии, мы понимаем, что катионы магния и лития очень близки, просто один двухзарядный, а второй однозарядный, поэтому мы можем заменить катион магния на катион лития. Группа SiO4 и группа PO4 имеют тетраэдрическую форму, и одну на другую можно легко замещать, у них близкие свойства. Марганец и железо очень близки, и их можно как угодно комбинировать. Если мы заменим магний на литий, а для компенсации заряда заменим SiO4 на PO4, то получим LiFePO4.

Создатели новых материалов учатся у природы. Есть природные минералы и известные фазы, и мы понимаем, что нужно сделать, чтобы эту фазу сделать именно электродным материалом, используя ту же самую структуру. Мы примерно понимаем, например, в какой координации должен быть d-катион, чтобы нормально работать: если он в октаэдре — хорошо, если он в тетраэдре, то это не очень хорошо, а если в пирамиде, обычно это очень плохо. В уже упоминавшемся примере LiCoBO3 катион кобальта находится в пирамиде, и это кончилось неудачно.

Используя знания о кристаллохимических свойствах и электрохимических потенциалах, можно предсказать, какой будет потенциал у того или иного металла в оксиде, в фосфате, в сульфате, в силикате. Пока что расчетные методы не позволяют сказать, как получить материал, которого еще нет в природе, или предложить какой-то состав, которого нет в природе. Но если мы предложим теоретикам, которые занимаются расчетами, конкретный материал с определенным составом, они могут посчитать потенциал и стабильность при деинтеркаляции. Комбинируя множество методов и разные области науки, мы получаем что-то новое.

Направления разработки новых материалов

Сейчас наиболее интересна замена лития в аккумуляторах на натрий или калий: разрабатывают натрийионные и калийионные аккумуляторы. В рамках литийионной технологии идут попытки развития материалов, которые обладали бы большими либо потенциалом, либо емкостью. Для оксидов это Li-rich NMC, в которых реализуется кислородный redox-переход. В них, в отличие от традиционных катодов, окисляются и восстанавливаются не только катионы никеля, кобальта, но еще и анионы кислорода. Есть планы попытаться использовать redox-переход не только кислорода, но и других анионов, скажем серы.

Для полианионных материалов крайне актуальным является не только оптимизация самих материалов (скажем, замена LiFePO4 на LiMnPO4 для увеличения напряжения с 3,4 до 4 В), но и поиск электролита, подходящего для еще более высоковольтных приложений. Тогда можно было бы использовать, например, соединения никеля: фосфаты, фторидофосфаты и так далее, потенциалы которых превышают 5 В (а увеличение потенциала дает кратное увеличение энергоемкости, за которую борются все производители литийионных аккумуляторов). Используемый сейчас состав электролита предложили лет тридцать назад. Это не идеальный состав, и его нужно модифицировать, сделать более устойчивым и на катоде, и на аноде. Кроме того, в России очень актуальна работоспособность аккумуляторов при низких температурах. Если мы зарядим аккумулятор при комнатной температуре, он может разряжаться и при -40 °C, но вот зарядить его при -40 °C уже нереально. Для холодостойких аккумуляторов в первую очередь нужно разрабатывать новый электролит.

Материалы, имеющие хорошую проводимость по ионам лития и низкую электропроводность, — твердые электролиты — тоже активно разрабатываются как альтернатива жидким или гельполимерным электролитам.


В статье использованы материалы: Постнаука


Средний балл: 10.0 (голосов 1)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Фотонный кристалл
Фотонный кристалл

III Международная гибридная школа-конференция "Сканирующая зондовая микроскопия для биологических систем - 2021"
НТ-МДТ Спектрум Инструментс приглашает вас принять участие в III Международной гибридной школе-конференции "Сканирующая зондовая микроскопия для биологических систем -2021", BioSPM-2021

SCAMT Workshop Week - практикум по нанотехнологиям в области хим/био/IT. Санкт-Петебург, 30 января - 6 февраля
SCAMT открывает подачу заявок на 8-ую научную школу SCAMT Workshop Week, которая пройдет с 30 января по 6 февраля 2022 года. Для студентов, прошедших отбор, участие в SWW бесплатное, иногородним предоставляется проживание.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Ленточки в косую полосочку: где кончается текстурный дизайн и начинается деформационная инженерия. Борофен: От слоя к слою. Лучше один раз увидеть, чем сто раз услышать: скачки Баркгаузена в сегнетоэлектрике. Украшение из скандия для притяжения водорода. Нобелевская премия 2021.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2021
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 8, 9, 10 и 11 июня 2021 г. Начало защит в 11.00. Защиты пройдут с использованием дистанционных образовательных технологий.

Академик Е.Н. Каблов: «Для освоения космоса нужны новые материалы»
Янина Хужина
В этом году весь мир отмечает 60-летие первого полета человека в космос. Успех миссии Юрия Гагарина стал возможен благодаря слаженной работе многих людей: физиков, математиков, конструкторов, инженеров-проектировщиков и, конечно, материаловедов. «Научная Россия» обсудила с академиком РАН Евгением Кабловым основные вехи в развитии космического и авиационного материаловедения.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2021 году
коллектив авторов
25 - 28 мая пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.