Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Пустынный загар — минеральная корка на камнях — пример системы, в которой обнаружен новый эффект

Mark Marathon / Wikimedia Commons

Найдены превращающие свет в электричество камни

Ключевые слова:  фотосинтез, фотоэффект

Опубликовал(а):  Палии Наталия Алексеевна

13 мая 2019

Ученые обнаружили возникновение электрического тока в неорганических системах, что напоминает первые этапы усваивания энергии Солнца бактериями и растениями в процессе фотосинтеза. Открытое явление протекает в различных минералах и почвах. В отличие от обычного фотосинтеза, в данном случае участвуют только неорганические соединения, которые не имеют отношения к деятельности живых форм. Открытый феномен может играть важную роль в биогеохимических процессах, пишут авторы в журнале Proceedings of the National Academy of Sciences ("Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings" by Anhuai Lu et al.)

Фотосинтез — процесс превращения энергии солнечного излучения в энергию химических связей — является основой жизни на Земле. Способные к фотосинтезу организмы, в основном растения и бактерии, в течение эволюции развили исключительно сложные системы для улавливания фотонов и преобразования их энергии.

Фотосинтез различных видов может достаточно сильно отличаться в деталях, но в общих чертах он схож. В частности, на первых этапах — световой фазе — поглощение фотона специальными комплексами белков позволяет оторвать электрон от подходящего соединения, в роли которого часто выступает вода. Получающиеся в результате серии реакций молекулы кислорода выделяются в атмосферу, а энергия ионов водорода и электронов используются клетками для синтеза других соединений.

Люди также научились создавать специальные материалы, способные эффективно преобразовать солнечный свет в другие виды энергии. В частности, солнечные батареи, вырабатывающие электрический ток под действием света, работают на основе фотоэффекта — испускании материалами электронов при поглощении фотонов. Однако до недавнего времени не было известно примеров естественного возникновения токов под действием света в неживой природе.

Ученые из Китая, Канады и США впервые описали неживой аналог первых этапов фотосинтеза. Авторам удалось обнаружить эффект в различных системах, таких как образующиеся на поверхности камней в сухом и жарком климате минеральные корки (пустынный загар), а также в частицах нескольких видов почв.

Электронная микроскопия и рентгеновская спектроскопия позволили выяснить состав веществ, в которых возникал обнаруженный феномен. Оказалось, что они в основном состоят из смешанных оксид-гидроксидов железа и марганца с полупроводниковыми свойствами. Содержание марганца оказалось особенно высоким по сравнению с нижележащим веществом. Ученые измерили фототок в образцах камней из пустыни: оказалось, что в богатых железом и марганцем минералах электроны приходят в движение под действием света на поверхности, но этого не наблюдается в толще материала.

Измеренные параметры электрических токов оставались стабильными при постоянном освещении, но быстро реагировали на его изменение, а эффективность преобразования фотонов в проводящие электроны оставалась неизменной. Авторы считают, что фототок возникает в таких богатых железом и марганцем минералах, как бирнессит, гематит и гётит.

На данный момент нет точных данных о возможном крупномасштабном влиянии обнаруженного феномена на биологические или геологические процессы. Тем не менее, авторы выдвигают гипотезу, что в местах с широкой распространенностью подобных покрытий на камнях могут протекать необычные для неживой природы химические реакции, такие как фотокаталитическое разложение воды с выделением кислорода. Другим вариантом является участие возникающих токов в метаболизме живых организмов путем осуществления восстановления некоторых веществ.

Ученые давно пытаются искусственно воссоздать фотосинтез в контролируемых условиях. Среди недавних достижений в этой области можно назвать сборку аппарат фотосинтеза в искусственной клетке и получение синтетической системы, которая значительно превосходит растения по эффективности превращения света в биомассу.

Тимур Кешелава


Источник: N+1



Комментарии
Это отличная новость. Пойду в игры поиграю теперь, настроение то улучшилось))

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Кластеры атомов
Кластеры атомов

Школа PI SCAMT: Стань руководителем глобальной лаборатории
Университет ИТМО приглашает принять участие в Школе PI. Школа PI - это возможность узнать как из точки А "молодой кандидат наук" дойти до точки Б "научный руководитель". За 1 неделю вы узнаете об этапах организации успешной исследовательской группы в России и разработаете дорожную карту построения своей собственной лаборатории. Школа PI подходит для кандидатов наук, защитивших диссертацию в области естественных наук не ранее 2015 года. Прием заявок до 1 мая 2021 г.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Новые титансодержащие комплексы для водородных
аккумуляторов. Зеленая электроника: мягкий актуатор из венериной мухоловки. Шелковичные черви создают новые нанокомпозиты in vivo. Конференции

В магистратуру МГУ - без экзаменов, юбилейная универсиада
Универсиада МГУ - уникальный конкурс, впервые проводимый в новом формате, который охватывает широкий диапазон участников – студентов и выпускников специалитета, бакалавриата, магистратуры, аспирантов, молодых ученых. Конкурс рассчитан на поддержку талантливой молодежи, мотивацию дальнейшего развития научно-исследовательской карьеры, пропаганду научных знаний, активное вовлечение участников в обмен мнениями и равноправное соревнование со своими сверстниками и коллегами на международном уровне, а также поступление в бесплатную магистратуру МГУ без экзаменов по результатам Универсиады.

Спинтроника и iPod
В.В.Уточникова
В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.

ДНК правит компьютером
Бидыло Тимофей Иванович
Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.