Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Пустынный загар — минеральная корка на камнях — пример системы, в которой обнаружен новый эффект

Mark Marathon / Wikimedia Commons

Найдены превращающие свет в электричество камни

Ключевые слова:  фотосинтез, фотоэффект

Опубликовал(а):  Палии Наталия Алексеевна

13 мая 2019

Ученые обнаружили возникновение электрического тока в неорганических системах, что напоминает первые этапы усваивания энергии Солнца бактериями и растениями в процессе фотосинтеза. Открытое явление протекает в различных минералах и почвах. В отличие от обычного фотосинтеза, в данном случае участвуют только неорганические соединения, которые не имеют отношения к деятельности живых форм. Открытый феномен может играть важную роль в биогеохимических процессах, пишут авторы в журнале Proceedings of the National Academy of Sciences ("Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings" by Anhuai Lu et al.)

Фотосинтез — процесс превращения энергии солнечного излучения в энергию химических связей — является основой жизни на Земле. Способные к фотосинтезу организмы, в основном растения и бактерии, в течение эволюции развили исключительно сложные системы для улавливания фотонов и преобразования их энергии.

Фотосинтез различных видов может достаточно сильно отличаться в деталях, но в общих чертах он схож. В частности, на первых этапах — световой фазе — поглощение фотона специальными комплексами белков позволяет оторвать электрон от подходящего соединения, в роли которого часто выступает вода. Получающиеся в результате серии реакций молекулы кислорода выделяются в атмосферу, а энергия ионов водорода и электронов используются клетками для синтеза других соединений.

Люди также научились создавать специальные материалы, способные эффективно преобразовать солнечный свет в другие виды энергии. В частности, солнечные батареи, вырабатывающие электрический ток под действием света, работают на основе фотоэффекта — испускании материалами электронов при поглощении фотонов. Однако до недавнего времени не было известно примеров естественного возникновения токов под действием света в неживой природе.

Ученые из Китая, Канады и США впервые описали неживой аналог первых этапов фотосинтеза. Авторам удалось обнаружить эффект в различных системах, таких как образующиеся на поверхности камней в сухом и жарком климате минеральные корки (пустынный загар), а также в частицах нескольких видов почв.

Электронная микроскопия и рентгеновская спектроскопия позволили выяснить состав веществ, в которых возникал обнаруженный феномен. Оказалось, что они в основном состоят из смешанных оксид-гидроксидов железа и марганца с полупроводниковыми свойствами. Содержание марганца оказалось особенно высоким по сравнению с нижележащим веществом. Ученые измерили фототок в образцах камней из пустыни: оказалось, что в богатых железом и марганцем минералах электроны приходят в движение под действием света на поверхности, но этого не наблюдается в толще материала.

Измеренные параметры электрических токов оставались стабильными при постоянном освещении, но быстро реагировали на его изменение, а эффективность преобразования фотонов в проводящие электроны оставалась неизменной. Авторы считают, что фототок возникает в таких богатых железом и марганцем минералах, как бирнессит, гематит и гётит.

На данный момент нет точных данных о возможном крупномасштабном влиянии обнаруженного феномена на биологические или геологические процессы. Тем не менее, авторы выдвигают гипотезу, что в местах с широкой распространенностью подобных покрытий на камнях могут протекать необычные для неживой природы химические реакции, такие как фотокаталитическое разложение воды с выделением кислорода. Другим вариантом является участие возникающих токов в метаболизме живых организмов путем осуществления восстановления некоторых веществ.

Ученые давно пытаются искусственно воссоздать фотосинтез в контролируемых условиях. Среди недавних достижений в этой области можно назвать сборку аппарат фотосинтеза в искусственной клетке и получение синтетической системы, которая значительно превосходит растения по эффективности превращения света в биомассу.

Тимур Кешелава


Источник: N+1




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Композит
Композит

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.