Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Эффект лотоса

Ключевые слова:  наноазбука, олимпиада, эффект лотоса

Автор(ы): Никельшпарг Эвелина Ильинична

Опубликовал(а):  Гудилин Евгений Алексеевич

04 декабря 2018

Лотос является одним из важнейших символов Востока и не только. Например, во времена фараонов лотос был символом Нижнего Египта и царской власти: цветок лотоса носила Нефертити. Бог растительности, Нефертум, также олицетворял первозданный лотос и поэтому именовался „молодым солнцем, что возникает из раскрывающегося лотоса“. В индуизме и буддизме лотос фактически один из основных символов космогонии, он олицетворяет чистоту, мудрость, нирвану и многое другое. Кстати, главная буддистская словесная формула (ом-мане-падме-хум) означает просто восхваление сокровища в виде цветка лотоса. В Китае цветок лотоса обожествлялся ещё со времён даосизма, а затем его культ прочно вошёл в буддистскую религию и в национальную культуру.

История почитания лотоса очень интересна, но для современности важнее то, что он действительно обладает необычными физико-химическими свойствами. Благодаря особому строению и очень высокой гидрофобности его листьев и лепестков цветы лотоса остаются удивительно чистыми — именно это поражало наших далёких предков. Цветок, возникший в грязном болоте и оставшийся чистым, незапятнанным, просто не мог не стать символом. Стихотворение средневекового корейского поэта Сон Кана (Чон Чхоля), написанное в форме классического трёхстишия сичжо (в переводе А. Ахматовой), прямо описывает эффект сверхгидрофобности лотоса:

Чем дождь сильнее льёт,
Тем лотос всё свежее;
Но лепестки, заметь,
Совсем не увлажнились.
Хочу, чтобы душа
Была чиста, как лотос.

Вот почему многие химики и материаловеды называют технологии получения сверхгидрофобных покрытий «лотосовыми».

Но как ему удается добиться такой сверхгидрофобности. "Эффект Лотоса" был открыт в 1990-е гг. немецким ботаником, профессором Вильгельмом Бартлоттом. Он показал, что лепестки цветка покрыты крошечными шишечками или "наночастицами". На рисунке мы видим поверхность лотоса под электронным микроскопом.

Но лист вдобавок как бы намазан воском. Он вырабатывается в железах растения, что делает его совершенно неуязвимым для воды.

Как же повторить уникальное свойство. Над этим работают ученые многих стран мира. Пока создано несколько покрытий, отвечающих подобными свойствами.

Первое из них создано в Японии – это тончайшая пленка с выступами и впадинами:

Секрет метода создания пленки в том, что в среду вводят микрочастицы органокремниевых соединений (полиорганосиланы), причём они могут содержать фтор (фторалкилсилан), а могут и не содержать.

Регулируя условия, в которых проходит процесс, авторы получили прочную, износостойкую и одновременно прозрачную гидрофобную плёнку для многих систем. Углы смачивания микрокапель воды на таких плёнках — от 150 до 160°. Такой подход позволяет покрыть сверхгидрофобной плёнкой многие поверхности: стекло, пластик, бумагу, словом, любое покрытие, способное выдержать условия осаждения.

Другой метод основан на использовании электрохимического способа. Используются при этом никель и тефлон. Процесс напоминает никелирование, но с электролитом, содержащим тефлон. Тефлон — электрически нейтральное соединение, поэтому, для того чтобы он участвовал в электролизе, его частицы перед добавлением в никельсодержащий электролит предварительно обрабатывают катионным поверхностно-активным веществом (ПАВ). Это помогает смешивать тефлон с электролитом. На втором этапе соосаждающиеся с ионами никеля частицы тефлона за счёт так называемого якорного эффекта закрепляются на поверхности. На покрытии возникают локальные очаги повышенной плотности и прочности, т.к. ток распределяется неравномерно. С другой стороны, именно на таких участках выделяется больше атомов водорода, которые стабилизируют процесс, то есть создают дополнительное экранирование, снижающее скорость осаждения. Наконец, на последнем этапе окончательно формируется сетчатая структура из частиц тефлона, однородно распределённых в слое осаждённого никеля. Кроме того, на поверхности остаётся тонкая плёнка молекул ПАВ, а внутри формирующегося покрытия остаются многочисленные микропоры.

С помощью такого метода можно получать покрытия с очень маленькими частицами тефлона (в диапазоне 1–100 нм). Гидрофобность такой поверхности быстро увеличивается с ростом содержания тефлона — уже при 10–15 вес.% угол смачивания капли воды на таком покрытии достигает 160°. Этот метод был бы удобен для создания электрических батарей, т.к. такие покрытия не только сверхгидрофобны, но и способны катализировать некоторые реакции.

Сейчас продукция на основе нанотехнологий, использующая «эффект лотоса» уже поступила в продажу. Это, в первую очередь, очистительные и полировочные аэрозоли.

Зачем нужны лотосовые покрытия. Лотосовые покрытия были бы незаменимы во многих сферах жизни человека. Создание стекол, с которых бы стекали мельчайшие капельки воды с растворенными частичками грязи. Создание плащей и другой специальной одежды. Создание самоочищающихся фасадов зданий. Это только единичные примеры использования уникального свойства лотоса.

«Эффект лотоса» – уникальное природное свойство цветка. Оно может быть использовано и в быту, и в промышленности, и, возможно, в медицине. Ученые в который раз пытаются копировать природу и не безуспешно. Возможно, вскоре такие покрытия заменят множество известных и привычных, а, может быть, даже наши зонтики уйдут в прошлое.


В статье использованы материалы: Олимпиада


Средний балл: 10.0 (голосов 2)

 


Комментарии
Gorasil, 14 декабря 2020 19:17 
Я бы сказал, что это поистине необычный эффект, который меня натолкнул на идею изменить философию моей всей жизни! Как для себя я понял, что нужно избегать всего, что способно погубить и наоборот, принимать все что идет на пользу. Таким образом я поменял работу и не стал пренебрегать возможностью подзаработать на таких вот сайтах https://derevnyaonline.ru/mindepozit/top- rejting-luchshih-kazino/ хотя раньше обходил их стороной. Но сейчас на многое смотрю по-другому. И если есть возможность подзаработать, то почему ей и не воспользоваться.
Vepoter, 14 декабря 2020 22:17 
Нужно будет, как то на досуги по свободе, прочитать более подробно про исписываемый вами эффект. потому что я его как то по другому себе представлял.
Svipid, 14 декабря 2020 22:42 
А меня наоборот, нечто иное заинтересовало. Так сказать направило мои мысли совсем в иное направление. Посмотрим что из этого получится.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Дефекты в SiC
Дефекты в SiC

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ» (Интересные научные события 2020 года от Американского физического общества (APS): Новый век сверхпроводимости. Магические углы в графене. Новые рекорды LIGO и Virgo: сверхмассивные и асимметричные слияния черных дыр. Свет от темной материи в эксперименте Xenon. Чего не хватает для создания квантового интернета? Коперниканский переворот в нейронных сетях. Червякомешалка. Вселенский метроном и предел точности атомных часов. Благородные металлы и графен против токсичных газов. Мультиферроик с ферродолинным упорядочением. Борные сенсоры азотосодержащих загрязнителей.

Наносистемы: физика, химия, математика (2020, Т. 11, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume11/11-6
Там же можно скачать номер журнала целиком.

С Новым годом!
Дорогие друзья и коллеги!
Поздравляем с наступающим 2021 годом!
Желаем всем хорошего настроения и здоровья, удачи во всем и новых достижений!

Спинтроника и iPod
В.В.Уточникова
В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.

ДНК правит компьютером
Бидыло Тимофей Иванович
Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.