Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Эффект лотоса

Ключевые слова:  наноазбука, олимпиада, эффект лотоса

Автор(ы): Никельшпарг Эвелина Ильинична

Опубликовал(а):  Гудилин Евгений Алексеевич

04 декабря 2018

Лотос является одним из важнейших символов Востока и не только. Например, во времена фараонов лотос был символом Нижнего Египта и царской власти: цветок лотоса носила Нефертити. Бог растительности, Нефертум, также олицетворял первозданный лотос и поэтому именовался „молодым солнцем, что возникает из раскрывающегося лотоса“. В индуизме и буддизме лотос фактически один из основных символов космогонии, он олицетворяет чистоту, мудрость, нирвану и многое другое. Кстати, главная буддистская словесная формула (ом-мане-падме-хум) означает просто восхваление сокровища в виде цветка лотоса. В Китае цветок лотоса обожествлялся ещё со времён даосизма, а затем его культ прочно вошёл в буддистскую религию и в национальную культуру.

История почитания лотоса очень интересна, но для современности важнее то, что он действительно обладает необычными физико-химическими свойствами. Благодаря особому строению и очень высокой гидрофобности его листьев и лепестков цветы лотоса остаются удивительно чистыми — именно это поражало наших далёких предков. Цветок, возникший в грязном болоте и оставшийся чистым, незапятнанным, просто не мог не стать символом. Стихотворение средневекового корейского поэта Сон Кана (Чон Чхоля), написанное в форме классического трёхстишия сичжо (в переводе А. Ахматовой), прямо описывает эффект сверхгидрофобности лотоса:

Чем дождь сильнее льёт,
Тем лотос всё свежее;
Но лепестки, заметь,
Совсем не увлажнились.
Хочу, чтобы душа
Была чиста, как лотос.

Вот почему многие химики и материаловеды называют технологии получения сверхгидрофобных покрытий «лотосовыми».

Но как ему удается добиться такой сверхгидрофобности. "Эффект Лотоса" был открыт в 1990-е гг. немецким ботаником, профессором Вильгельмом Бартлоттом. Он показал, что лепестки цветка покрыты крошечными шишечками или "наночастицами". На рисунке мы видим поверхность лотоса под электронным микроскопом.

Но лист вдобавок как бы намазан воском. Он вырабатывается в железах растения, что делает его совершенно неуязвимым для воды.

Как же повторить уникальное свойство. Над этим работают ученые многих стран мира. Пока создано несколько покрытий, отвечающих подобными свойствами.

Первое из них создано в Японии – это тончайшая пленка с выступами и впадинами:

Секрет метода создания пленки в том, что в среду вводят микрочастицы органокремниевых соединений (полиорганосиланы), причём они могут содержать фтор (фторалкилсилан), а могут и не содержать.

Регулируя условия, в которых проходит процесс, авторы получили прочную, износостойкую и одновременно прозрачную гидрофобную плёнку для многих систем. Углы смачивания микрокапель воды на таких плёнках — от 150 до 160°. Такой подход позволяет покрыть сверхгидрофобной плёнкой многие поверхности: стекло, пластик, бумагу, словом, любое покрытие, способное выдержать условия осаждения.

Другой метод основан на использовании электрохимического способа. Используются при этом никель и тефлон. Процесс напоминает никелирование, но с электролитом, содержащим тефлон. Тефлон — электрически нейтральное соединение, поэтому, для того чтобы он участвовал в электролизе, его частицы перед добавлением в никельсодержащий электролит предварительно обрабатывают катионным поверхностно-активным веществом (ПАВ). Это помогает смешивать тефлон с электролитом. На втором этапе соосаждающиеся с ионами никеля частицы тефлона за счёт так называемого якорного эффекта закрепляются на поверхности. На покрытии возникают локальные очаги повышенной плотности и прочности, т.к. ток распределяется неравномерно. С другой стороны, именно на таких участках выделяется больше атомов водорода, которые стабилизируют процесс, то есть создают дополнительное экранирование, снижающее скорость осаждения. Наконец, на последнем этапе окончательно формируется сетчатая структура из частиц тефлона, однородно распределённых в слое осаждённого никеля. Кроме того, на поверхности остаётся тонкая плёнка молекул ПАВ, а внутри формирующегося покрытия остаются многочисленные микропоры.

С помощью такого метода можно получать покрытия с очень маленькими частицами тефлона (в диапазоне 1–100 нм). Гидрофобность такой поверхности быстро увеличивается с ростом содержания тефлона — уже при 10–15 вес.% угол смачивания капли воды на таком покрытии достигает 160°. Этот метод был бы удобен для создания электрических батарей, т.к. такие покрытия не только сверхгидрофобны, но и способны катализировать некоторые реакции.

Сейчас продукция на основе нанотехнологий, использующая «эффект лотоса» уже поступила в продажу. Это, в первую очередь, очистительные и полировочные аэрозоли.

Зачем нужны лотосовые покрытия. Лотосовые покрытия были бы незаменимы во многих сферах жизни человека. Создание стекол, с которых бы стекали мельчайшие капельки воды с растворенными частичками грязи. Создание плащей и другой специальной одежды. Создание самоочищающихся фасадов зданий. Это только единичные примеры использования уникального свойства лотоса.

«Эффект лотоса» – уникальное природное свойство цветка. Оно может быть использовано и в быту, и в промышленности, и, возможно, в медицине. Ученые в который раз пытаются копировать природу и не безуспешно. Возможно, вскоре такие покрытия заменят множество известных и привычных, а, может быть, даже наши зонтики уйдут в прошлое.


В статье использованы материалы: Олимпиада


Средний балл: 10.0 (голосов 2)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

в лабиринтах ZnO
в лабиринтах ZnO

4 февраля объявили лауреатов V Всероссийской премии «За верность науке»
4 февраля в здании Минобрнауки РФ состоялась торжественное награждение лауреатов V Всероссийской премии «За верность науке». 11 научно-просветительских проектов были отмечены престижной наградой.

Всероссийский съезд учителей и преподавателей химии
5 февраля в Московском университете в Шуваловском корпусе МГУ состоится Всероссийский съезд учителей и преподавателей химии, посвященный Международному году Периодической таблицы химических элементов, начало - 10 часов.

II Всероссийский химический диктант пройдет 18 мая 2019 года
В 2019 году периодическому закону Дмитрия Менделеева исполнится 150 лет! В честь великого открытия этот год объявлен Международным годом Периодической таблицы химических элементов. Одним из наиболее ярких событий, приуроченных к этому году, станет II Всероссийский химический диктант, который пройдет 18 мая и который в этом году выходит на международный уровень. Мероприятие было анонсировано в рамках церемонии открытия Международного года Периодической таблицы химических элементов 29 января 2019 года в Париже, в штаб-квартире ЮНЕСКО.

Самые необычные таблицы Менделеева на выставке Международного года Периодической таблицы химических элементов

6-8 февраля в Российской академии наук состоялось торжественное открытие Международного года периодической таблицы химических элементов в России и приуроченная к этому масштабная интерактивная выставка

Почувствовать живое...
Е.А.Гудилин, А.А.Семенова, Н.А.Браже
Неразрушающее исследование живых клеток и клеточных структур является в настоящее время важным направлением научных изысканий, которые во многих зарубежных и российских научных группах направлены на достижение вполне прагматической цели – разработку новых принципов биомедицинской диагностики и эффективных подходов в нарождающейся персональной медицине.

Российская газета: Перевернуть пирамиду. Президент РАН: как повысить наши шансы на Нобеля
Юрий Медведев
Почему Россия по числу Нобелей отстает от ведущих стран мира, уступая, например, даже маленькой Швейцарии? Замалчиваются ли достижения отечественных ученых? Почему без привлечения в науку российского бизнеса мы не сможем успешно конкурировать в борьбе за престижную научную премию? Об этом корреспондент "РГ" беседует с президентом РАН Александром Сергеевым, который побывал в Стокгольме на вручении Нобелевских премий и поделился своими впечатлениями.

Инновационные системы: достижения и проблемы
Олег Фиговский, Валерий Гумаров

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.