Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Почему наночастицы плавятся при низкой температуре?

Ключевые слова:  наноазбука, олимпиада

Автор(ы): Богданов Константин Юрьевич

Опубликовал(а):  Гудилин Евгений Алексеевич

04 декабря 2018

При уменьшении размеров частицы изменяются не только её механические свойства, но также и её термодинамические характеристики - температура её плавления становится гораздо ниже, чем у образцов обычного размера.

Lai с сотр. (Applied Physics Letters, 1998, v. 72: 1098-1100), используя сверхчувствительный калориметр с чувствительностью 0,1 нДж, показали, что температура плавления наночастиц алюминия падает с уменьшением размеров частицы. При этом температура плавления частицы размером 4 нм уменьшается на 140оС по сравнению с температурой плавления образца алюминия обычных размеров (см. рис. 1).

Зависимости, аналогичные той, которая показана на рис.1, были получены для многих металлов. Так, при уменьшении диаметра наночастиц из олова до 8 нм их температура плавления падает на 100оС (от 230оС до 130оС). При этом самое большое падение температуры плавления (более чем на 500оС ) было обнаружено у наночастиц золота.

У наночастиц почти всё атомы на поверхности!

Причиной понижения температуры плавления у наночастиц служит то, что атомы на поверхности всех кристаллов находятся в особых условиях, а доля таких «поверхностных» атомов у наночастиц становится очень большой. Сделаем оценку этой «поверхностной» доли для алюминия.

Легко вычислить, что в 1 см3 алюминия содержится примерно 6.1022 атомов. Для простоты будем считать, что атомы находятся в узлах кубической кристаллической решётки, тогда расстояние между соседними атомами в этой решётке будет равно около 4.10-8 см. А значит, плотность атомов на поверхности составит 6.1014/см2.

Теперь возьмём кубик из алюминия с ребром 1 см. Число поверхностных атомов у него будет равно 36.1014, а число атомов внутри - 6.1022. Таким образом, доля поверхностных атомов у такого алюминиевого кубика «обычных» размеров составляет всего 6.10-8.

Если сделать такие же вычисления для кубика из алюминия размером 5 нм, то окажется, что на поверхности такого «нанокубика» находится уже 12% всех его атомов. Ну, а на поверхности кубика размером 1 нм, вообще, находится больше половины всех атомов! Зависимость «поверхностной» доли от числа атомов показана на рис.2.

На поверхности кристалла порядка нет!

С начала 60-х годов прошлого века учёные считают, что атомы, расположенные на поверхности кристаллов, находятся в особых условиях. Силы, заставляющие их находиться в узлах кристаллической решётки, действуют на них только снизу. Поэтому поверхностным атомам (или молекулам) ничего не стоит «уклониться от советов и объятий» молекул, находящихся в решётке, и если это происходит, то к такому же решению приходят сразу несколько поверхностных слоёв атомов. В результате, на поверхности всех кристаллов образуется плёнка жидкости. Кстати, кристаллы льда не являются исключением (см. рис. 3). Поэтому лёд и скользкий.

Толщина жидкой плёнки на поверхности кристалла растёт с температурой, так как более высокая тепловая энергия молекул вырывает из кристаллической решётки больше поверхностных слоёв. Теоретические оценки и эксперименты показывают, что как только толщина жидкой плёнки на поверхности кристалла начинает превышать 1/10 размеров кристалла, кристаллическая решётка разрушается и частица становится жидкой.

Очевидно, что «легкоплавкость» наночастиц следует учитывать на любых нанопроизводствах. Известно, например, что размеры современных элементов электронных микросхем находятся в нанодиапазоне. Поэтому понижение температуры плавления кристаллических нанообъектов накладывает определённые ограничения на температурные режимы работы современных и будущих микросхем.

Об других "загадочных" явлениях наномира информацию можно найти в научно-популярной лекции «Что могут нанотехнологии», а ссылки на другие публикации - на личной страничке автора.


В статье использованы материалы: Олимпиада, Сайт К.Ю.Богданова


Средний балл: 10.0 (голосов 1)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Финальная Закономерность
Финальная Закономерность

Конкурс логотипа ФНМ МГУ
Факультет наук о материалах МГУ имени М.В.Ломоносова объявляет творческий конкурс логотипа (эмблемы) ФНМ, работы принимаются с 21 августа до 15 сентября 2019 года. Участники - все, кто имеет или когда бы то ни было имел отношение к ФНМ МГУ: студенты, аспиранты, преподаватели, сотрудники, выпускники, а также все творческие люди из большой университетской семьи.

Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»
Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.