Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Как работает оптический нанопинцет

Ключевые слова:  нанопинцет, олимпиада

Автор(ы): Богданов Константин Юрьевич

Опубликовал(а):  Гудилин Евгений Алексеевич

04 декабря 2018

Оптический (или лазерный) пинцет представляет из себя устройство, использующее сфокусированный луч лазера для передвижения микроскопических объектов и удержания их в определённом месте. Одна из статей "Наноазбуки" (см. здесь) уже была посвящена этому важному инструменту нанотехнологий. Автор этой статьи постарается в популярной форме ответить на вопрос - почему некоторые частицы, оказавшись в лазерном луче, стремятся в ту область, где интенсивность света максимальна, т.е. в фокус (см. рис. 1).

Причина I - поляризованные частицы втягиваются в электрическое поле

Прежде чем объяснить стремление частиц к фокусу, вспомним, что луч света - это электромагнитная волна, и чем больше интенсивность света, тем больше напряжённость электрического поля в поперечном сечении луча. Поэтому в фокусе среднеквадратичная величина напряжённости электрического поля может увеличиваться во много раз. Таким образом, электрическое поле фокусируемого светового луча становится НЕоднородным, увеличиваясь по интенсивности по мере приближения к фокусу.

Пусть частица, которую мы хотим удержать с помощью оптического пинцета, сделана из диэлектрика. Известно, что внешнее электрическое поле действует на молекулу диэлектрика, перемещая внутри неё разноимённые заряды в разные стороны, в результате чего эта молекула становится диполем и ориентируется вдоль силовых линий поля. Это явление называют поляризацией диэлектрика. При поляризации диэлектрика на его противоположных по отношению к внешнему полю поверхностях появляются разноимённые и равные по величине электрические заряды, называемые связанными.

Пусть наша частица из диэлектрика находится в световом луче вдали от фокуса. Тогда можно считать, что она находится в однородном электрическом поле (см. рис. 2). Так как напряжённость электрического поля слева и справа от частицы одна и та же, то и электрические силы, действующие на положительные (F+) и отрицательные (F-) связанные заряды, тоже одинаковы. В результате, частица, находящаяся в ОДНОРОДНОМ электрическом поле остаётся НЕПОДВИЖНОЙ.

Пусть теперь наша частица находится рядом с областью фокуса, где напряжённость электрического поля (густота силовых линий) постепенно возрастает (крайне левая частица на рис. 3) при движении слева направо. В этом месте частица тоже будет поляризована, но электрические силы, действующие на положительные (F+) и отрицательные (F-) связанные заряды, будут различны, т.к. напряжённость поля слева от частицы меньше, чем справа. Поэтому на частицу будет действовать результирующая сила, направленная вправо, к области фокуса.

Легко догадаться, что на крайне правую частицу (см. рис. 3), находящуюся с другой стороны фокуса, будет действовать результирующая, направленная влево, к области фокуса. Таким образом, все частицы, оказавшиеся в фокусированном луче света, будут стремиться к его фокусу, как маятник стремится к положению равновесия.

Причина II - преломление света удерживает частицу в центре луча

Если диаметр частицы гораздо больше длины волны света, то для такой частицы становятся справедливы законы геометрической оптики, а именно, частица может преломлять свет, т.е. изменять его направление. В то же время, согласно закону сохранения импульса сумма импульсов света (фотонов) и частицы должна оставаться постоянной. Другими словами, если частица преломляет свет, например, направо, то сама она должна двигаться налево.

Следует отметить, что интенсивность света в лазерном луче максимальна вдоль его оси и постепенно падает при удалении от неё. Поэтому, если частица находится на оси светового пучка, то число фотонов, отклоняемых ею налево и направо, одинаково. В результате, частица остаётся на оси (см. рис. 4b).

В случая, когда частица смещена влево относительно оси светового луча (см. рис. 4a), число фотонов, отклоняемых налево (см. луч 2 на рис. 4a), превышает их число, отклоняемых направо (см. луч 1 на рис. 4a). Поэтому возникает составляющая силы Fnet, направленная к оси луча, направо.

Очевидно, что на частицу, смещённую вправо от оси луча, будет действовать результирующая, направленная влево, и опять к оси данного луча. Таким образом, все частицы, оказавшиеся не на оси луча, будут стремиться к его оси, как маятник к положению равновесия.

Исключения из правил

Чтобы оптический пинцет использовал силы, описанные выше в "причине I", необходимо, чтобы частица поляризовалась во внешнем электрическом поле и на её поверхности появлялись связанные заряды. При этом связанные заряды должны создавать поле, направленное в противоложную сторону. Только в этом случае частицы устремятся к области фокуса. Если же диэлектрическая постоянная среды, в которой плавает частица, больше диэлектрической постоянной вещества частицы, то поляризация частицы будет обратной, и частица будет стремиться убежать из области фокуса. Так, например, ведут себя воздушные пузырьки, плавающие в глицерине.

Такие же ограничения относятся и к "причине II". Если абсолютный показатель преломления материалы частицы будет меньше, чем у среды, в которой она находится, то частица будет отклонять свет в другую сторону, а значит, стремиться отойти подальше от оси луча. Примером могут быть те же воздушные пузырьки в глицерине.

Чтобы "причины I и II" работали лучше необходимо величину относительного показателя преломления материала частицы делать как можно большей.

Более подробно рассказано о принципах работы оптического пинцета здесь, а посмотреть видео того, как он работает, можно ЗДЕСЬ.

Информацию о других инструментах и явлениях наномира можно найти в научно-популярной лекции «Что могут нанотехнологии», а ссылки на другие публикации автора - на его личной страничке.


В статье использованы материалы: Олимпиада


Средний балл: 10.0 (голосов 3)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Самоорганизованные серебряные нанопризмы
Самоорганизованные серебряные нанопризмы

Интервью с участниками, авторами задач и организаторами XIII Олимпиады
Предлагаем ознакомиться с подборкой видеороликов - миниинтервью, взятых в течение очного тура XIII Всероссийской Интернет-олимпиады по нанотехнологиям "Нанотехнологии - прорыв в будущее!" (25 - 30 марта 2019 года).

Неделя Олега Лосева
Портал RSCI.RU и инициаторы проведения "Недель Олега Лосева" приглашают все вузы и факультеты физико-технологического и радиоэлектронного профиля к участию в первой Неделе Олега Лосева в Рунете, посвященной Олегу Владимировичу Лосеву - признанному пионеру полупроводниковой электроники и оптоэлектроники.

Магистратура Московского университета по химической технологии
Химический факультет МГУ имени М.В.Ломоносова объявляет о приеме в магистратуру "Химическая технология" для подготовки специалистов в области полимерных композиционных материалов, углеродных материалов, защитных покрытий.

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.