Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Новый метод получения плёнок для солнечных элементов

Ключевые слова:  перовскиты, солнечная энергетика

Опубликовал(а):  Гудилин Евгений Алексеевич

21 июля 2018

По сообщениям Пресс - службы МГУ, сотрудники факультета наук о материалах МГУ имени М.В.Ломоносова объяснили ключевые механизмы взаимодействия гибридных перовскитов с растворителями и на основе полученных результатов предложили новые подходы к получению перовскитного светопоглощающего слоя тонкоплёночных солнечных элементов из слабокоординирующих апротонных растворителей. Результаты работы опубликованы в журнале Chemistry of Materials.

На сегодняшний день тонкоплёночные солнечные элементы на основе гибридных перовскитов уже достигли КПД 23,2%, превзойдя традиционные солнечные батареи на основе кремния. При этом светопоглощающий слой перовскита в таких устройствах может быть получен более простыми и дешёвыми растворными методами. В новом исследовании, выполненном в лаборатории новых материалов для солнечной энергетики факультета наук о материалах под руководством заведующего лабораторией к.х.н. Алексея Тарасова, молодые учёные исследовали процессы кристаллизации перовскита из обладающего необычными свойствами растворителя — лактона.

«Разрабатывая новые инновационные безрастворные методы получения солнечных элементов в нашей лаборатории, мы уделяем большое внимание фундаментальным аспектам химии перовскитов. Это традиционная особенность материаловедческой школы МГУ, отличающая нас от большинства мировых групп», — рассказывает Алексей Тарасов.

Для нанесения тонких плёнок перовскита из растворов обычно используются два растворителя: диметилсульфоксид и диметилформамид. Однако более ранние работы учёных МГУ показали, что кристаллизация из них протекает через образование промежуточных соединений — кристаллосольватов, которые могут ухудшать морфологию и функциональные свойства перовскитного слоя.

В качестве растворителя для перовскита был известен также лактон, проявляющий так называемую ретроградную растворимость (при повышении температуры растворимость перовскита в нём понижается). Эту особенность исследователи широко применяли для получения монокристаллов, а попытки получить тонкую плёнку заканчивались формированием отдельных кристаллитов на подложке. Долгое время причины такого необычного поведения растворов перовскитов в лактонах были неизвестны. Считалось, что взаимодействие перовскит-лактон настолько слабое, что он даже не образует с ним сольватов. Однако учёные обнаружили, что существует как минимум три вида кристаллосольватов перовскита с лактонами, а некоторые из них имеют уникальную кластерную структуру. Стало ясно, что равновесия в растворах перовскита в лактонах значительно сложнее, чем представлялось ранее.

«Мы установили, что при комнатной температуре перовскит растворяется с образованием таких кластеров, а при нагреве они распадаются до малоразмерных комплексов. Это приводит к пересыщению и выпадению перовскита из раствора в виде монокристаллов. Мы показали, что именно выпадение кластерного аддукта вместо перовскита препятствовало получению тонких плёнок из этого растворителя и на основе понимания процессов, протекающих при растворении перовскита в лактоне, мы предложили подходы, направляющие кристаллизацию перовскита в обход образования кластеров, что впервые позволило получить из него качественные плёнки. Это отличный пример практического применения фундаментальных химических знаний для решения прикладных материаловедческих задач — именно того, что во всем мире принято называть фундаментальным материаловедением», — комментирует Алексей Тарасов.

Исследование проходило в сотрудничестве с учёными Курчатовского центра синхротронного излучения.





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Наноновогодняя Наноелочка 2016
Наноновогодняя Наноелочка 2016

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Графеновые маски выходят на борьбу с Covid 19. Графен губит вирусы. Сенсор для противотуберкулезного препарата. Взаимодействие Дзялошинского-Мории и механическая деформация. Скирмионы займутся растяжкой?

Ученые разработали технологию трехмерной печати генно-инженерных конструкций для направленной регенерации костных тканей
Группа российских ученых разработала оригинальную технологию трехмерной печати персонализированных изделий из биоактивной керамики и создала персонализированные ген-активированные имплантаты. Проведен комплексный физико-химический и биохимический анализ экспериментальных образцов ген-активированных материалов и персонализированных имплантатов для инженерии и направленной регенерации костных тканей, полученных с использованием технологий трехмерной печати, включая доклинические исследования на крупных животных.

Ученые из ИОФ РАН осуществили лазерный перенос графена
Исследователи из Института общей физики им. А.М. Прохорова РАН (ИОФ РАН) напечатали «смятый» графен на кремниевой подложке, используя метод лазерно-индуцированного прямого переноса. Этот относительно простой процесс может заменить трудоемкие литографические способы создания гарфеновых структур в перспективных устройствах микроэлектроники.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2020
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 16, 17, 18 и 19 июня 2020 г.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2020 году
коллектив авторов
2 - 5 июня пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.