Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Химики из МГУ свернули двумерный теллурид кадмия в нанотрубки

Ключевые слова:  нанотрубки, самосборка

Опубликовал(а):  Гудилин Евгений Алексеевич

20 апреля 2018

По сообщениям Пресс-центра МГУ, сотрудники химического факультета и факультета наук о материалах МГУ имени М.В.Ломоносова вместе с иностранными коллегами обнаружили, что двумерные листы теллурида кадмия могут самопроизвольно сворачиваться в нанотрубки, что может найти применение в электронике и фотонике. Результаты исследования были опубликованы в высокорейтинговом журнале Chemistry of Materials.

В ходе работы учёные исследовали двумерные полупроводниковые материалы. К ним относятся, например, графен, фосфорен, двумерные слои дисульфида молибдена, двумерные перовскиты — в последнее время они привлекают огромный интерес учёных. Такие материалы представляют собой атомно-тонкие кристаллы с двумерными электронными свойствами. Учёные предполагают, что эти двумерные материалы можно использовать для создания новых приборов.

«Мы изучали двумерный теллурид кадмия CdTe и обнаружили неожиданный эффект спонтанного сворачивания ультратонких, толщиной всего один нанометр, двумерных листов этого полупроводника, которые иначе называются коллоидными квантовыми колодцами», — рассказал один из авторов Роман Васильев, кандидат химических наук, доцент химического факультета и факультета наук о материалах МГУ имени М.В.Ломоносова.

Коллоидные квантовые колодцы — это новое поколение коллоидных квантовых точек. Квантовые точки обладают выраженными люминесцентными свойствами и уже нашли применение в коммерчески выпускаемых устройствах, например, телевизорах. Квантовые колодцы — двумерный вариант квантовых точек — пока что только исследуются, но они обладают чрезвычайно узкими полосами люминесценции, что имеет большое значение для высокой чистоты цветопередачи в светоизлучающих устройствах.

Учёные исследовали свойства двумерных листов теллурида кадмия, меняя органические молекулы, которые были «пришиты» к их поверхности и обеспечивали стабильность наночастиц. Для синтеза наночастиц двумерного теллурида кадмия химики использовали коллоидный метод и получили их в колбе. Для этого учёные провели реакцию в органическом растворителе в присутствии поверхностно-активных веществ. Подбирая условия, исследователи смогли добиться роста наночастиц в виде атомно-тонких листов.

Сначала авторы вырастили плоские двумерные fлисты, покрытые стабилизатором — олеиновой кислотой. Удалось получить размеры листов в сотни нанометров при толщине строго в один нанометр. Затем учёные стали заменять молекулы олеиновой кислоты на другие органические молекулы и анализировать размер, форму получившихся наночастиц, их состав и кристаллическую структуру. Для этого они использовали электронный микроскоп Центра коллективного пользования МГУ.

Во время работы они обнаружили, что при использовании специального класса стабилизаторов — тиолов — плоские листы теллурида кадмия свернулись в аккуратные и однородные трубочки. Присоединяясь к поверхности листа, молекулы тиола увеличивают толщину ровно на один монослой (0,15 нанометра) и вызывают механические напряжения, которые приводят к сворачиванию листа в строго определённом кристаллографическом направлении. Сворачивание происходит у всех наночастиц одновременно, и радиус “свёртка” одинаков для всех наноструктур.

«Проведённое исследование открывает новые возможности для манипуляций с двумерными материалами и наночастицами. Весьма неожиданный эффект сворачивания напоминает оригами, только в нашем случае листы имеют толщину один нанометр. Возможность управлять пространственной формой наночастиц может найти применение в создании оптических материалов с анизотропными свойствами и с поляризованной люминесценцией. С их помощью можно разработать активные светоизлучающие матрицы для дисплеев, которые уменьшат энергопотребление и увеличат яркость и контрастность устройства. Можно также предположить возможность конструирования новых наноустройств, например, транзисторов с формой трубки. Данные интересные свойства могут быть востребованы в новых поколениях светоизлучающих и сенсорных устройств, в оптических и оптоэлектронных технологиях и нанотехнологиях», — заключил учёный.

Работа была выполнена при поддержке двух грантов Российского фонда фундаментальных исследований в сотрудничестве с учёными из Национального института наук о материалах (Япония).


Источник: Пресс-центр МГУ




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

К дню Святого Патрика
К дню Святого Патрика

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

I МОСКОВСКАЯ ОСЕННЯЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ПЕРОВСКИТНОЙ ФОТОВОЛЬТАИКЕ
14-15 октября 2019 года состоится школа - конференция молодых ученых - I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019).

Золото России на Международной Химической Олимпиаде
30 июля в Париже завершилась 51-я Международная химическая олимпиада. Она была рекордной по числу участников - 309 школьников из более, чем 80 стран. Олимпиада прошла под девизом "Двигаем науку вместе" ("Make the science together"). Сборная России на олимпиаде завоевала 4 золотые медали и в медальном зачете поделила 1-2 место с командой Кореи. Победителями стали Михаил Матвеев (Вологда) и три москвича - Даниил Бардонов, Алексей Шишкин и Никита Чернов.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.