Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Учёные с помощью лазера впервые охладили жидкость
(фото Dennis Wise/University of Washington).

Инженеры, впервые использовавшие инфракрасный лазерный луч для охлаждения жидкостей
Учёные с помощью лазера впервые охладили жидкость
(фото Dennis Wise/University of Washington).

Когда нанокристаллы охлаждаются с помощью лазера, они испускают красновато-зелёное свечение, которое можно увидеть невооруженным глазом

Учёные с помощью лазера впервые охладили жидкость

Ключевые слова:  Proceedings of the National Academy of Sciences, Лазер, Охлаждение, периодика, Физика

Опубликовал(а):  Доронин Федор Александрович

25 ноября 2015

Первый лазер, прибор для усиления света посредством вынужденного излучения, был изобретен в 1960 году, и всегда был известен как инструмент, который вырабатывает тепловую энергию — либо в качестве рабочего инструмента, либо как побочный эффект работы, либо в кинематографе как оружие для победы над межгалактическими врагами. Однако концентрированные пучки света, испускаемые лазером, никогда не были в состоянии охлаждать жидкость.

Физики из Университета Вашингтона стали первыми, кто смог заставить лазер охлаждать воду и другие жидкости. Об открытии сообщается в пресс-релизе университета.

В исследовании, результаты которого будут опубликованы в журнале Proceedings of the National Academy of Sciences (от ред. Paden B. Roder, Bennett E. Smith,Xuezhe Zhou, Matthew J. Crane, and Peter J. Pauzauskie Laser refrigeration of hydrothermal nanocrystals in physiological media), учёные использовали лазер, испускающий инфракрасный свет. С его помощью физики продемонстрировали совершенно новые свойства лазерного луча: он понизил температуру воды до 2,2 градуса по Цельсию.

Исследовательская группа создала установку, которая использовалась в качестве оптической ловушки. Внутри камеры с жидкостью лучами удерживался нанокристалл (цель). Освещая "охлаждающим" лазерным лучом микроскопический кристалл, взвешенный в воде, учёные заставляли последний генерировать излучение. Испускаемое свечение "забирало" у нанокристалла немного больше энергии, чем он получал от лазера. Благодаря этому процессу и сам кристалл, и окружающая его жидкость постепенно охлаждались.

Чтобы определить, охлаждается ли вода вокруг цели, приборы регистрировали тень нанокристалла. По мере того как жидкость теряет тепло, цель замедляет своё движение близ точки захвата в оптической ловушке. Наблюдая за малейшими изменениями в движении нанокристалла, физики смогли судить о падении температуры.

Исследователи также заставили кристалл менять свой цвет от голубовато-зелёного до красновато-зелёного по мере охлаждения. Этот эффект в дальнейшем можно будет использовать в качестве цветового индикатора температуры.

Физики США создавали свою установку с прицелом на работу с биологическими объектами, поэтому они выбрали для экспериментов именно инфракрасное излучение. Оно не вызывает "ожог" у клеток и прочих "живых" систем (в отличие от видимого света).

В ходе экспериментов учёные продемонстрировали, как созданный ими лазер может охладить солевой раствор и среду для культивирования клеток, которые обычно используются в генетических и молекулярных лабораторных опытах.

"Когда вы идете в кино смотреть "Звездные Войны", вы видите на экране, как лазерные бластеры в руках героев раскаляют и сжигают предметы. Мы же создали первый лазерный луч, который, наоборот, может охлаждать жидкость, такую как вода, в обычных повседневных условиях. Это нечто совершенно новое в науке", — рассказывает руководитель исследования Питер Паузовский (Peter J. Pauzauskie), доцент кафедры материаловедения и инженерии Университета Вашингтона.

Исследователи перечисляют множество областей, в которых может найти применение технология лазерного охлаждения. Например, микропроцессоры могут использовать лазерный луч для точечного охлаждения отдельных компонентов в компьютерных чипах, чтобы предотвратить их перегрев.

Биологи смогут использовать лазерный луч, чтобы целенаправленно охладить часть клетки во время того, как она делится, и отследить хромосомные изменения. Понижение температуры замедлит эти процессы, дав исследователям возможность увидеть детализированную картину происходящего.

Также можно остудить один нейрон — притормозить его деятельность, не повреждая, — чтобы увидеть, как соседи-нейроны будут обходиться без него и изменять свою работу.

"Используя технологию лазерного охлаждения, можно будет даже снять фильмы на тему "Замедленная жизнь в действии", — добавляет Паузовский. — А главное то, что вам не обязательно охлаждать всю клетку целиком, рискуя убить эту крошечную единицу жизни: достаточно будет направить луч на нужный участок".

Отметим, что, как правило, создание кристаллов для лазеров — так называемой активной среды, определяющей мощность лазера, — весьма дорогостоящий процесс, который требует много времени и может стоить больших денег.

Учёные Университета Вашингтона в ходе своего исследования показали, что для изготовления кристаллов для лазерных "холодильных установок" может быть использован гидротермальный синтез, который ускоряет и удешевляет производство, а также позволяет сделать его масштабируемым.

Пока команда исследователей Университета Вашингтона продемонстрировала эффект охлаждения только с одним нанокристаллом. В дальнейшем физики планируют начать тестирование технологии на нескольких кристаллах. Для этого потребуются лазеры большей мощности. Так как процесс лазерного охлаждения достаточно энергоёмкий, в будущем исследователи будут искать способы улучшения эффективности работы установки.

"Мы заинтересованы в идеях и предложениях других учёных или представителей сферы бизнеса, — отмечает Питер Паузовский, — для расширения области применения лазерного охлаждения с максимальной пользой для человечества".

Добавим, что процесс лазерного охлаждения впервые был продемонстрирован в условиях вакуума в Лос-Аламосской национальной лаборатории (LANL) в 1995 году, но прошло почти 20 лет до того момента, как учёные сумели наглядно продемонстрировать этот процесс в жидкостях


Источник: Вести. Наука



Комментарии
Палии Наталия Алексеевна, 25 ноября 2015 19:40 
почти 20 лет назад "Нобелевская премия по физике 1997 года присуждена группе исследователей - Стивену Чу, Уильяму Филипсу (США) и Клоду Коэн-Таннуджи (Франция) за работу по лазерному охлаждению атомов" -Подробнее см.: http://www.n...cles/10172/ (Наука и жизнь, НОБЕЛЕВСКИЕ ПРЕМИИ 1997 ГОДА. ОЧЕНЬ ХОЛОДНЫЕ АТОМЫ)
+ на официальном Нобелевском сайте http://www.n...eates/1997/
+ в разделе "Библиотека" НАНОМЕТРа видео "Постнаука.Выпуски: 262, 329, 334".

Известен эффект магнитного охлаждения. Фотон состоит из потоков отдельностей (квантов) электростатического и магнитного полей, фокусирующихся в динамический локус, "бегущий" по вектору распространения фотона. В данном случае, вероятно, магнитная составляющая фотонов ответственна за эффект охлаждения?
Палии Наталия Алексеевна, 27 ноября 2015 21:22 

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Тесное соседство
Тесное соседство

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.