Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Учёные с помощью лазера впервые охладили жидкость
(фото Dennis Wise/University of Washington).

Инженеры, впервые использовавшие инфракрасный лазерный луч для охлаждения жидкостей
Учёные с помощью лазера впервые охладили жидкость
(фото Dennis Wise/University of Washington).

Когда нанокристаллы охлаждаются с помощью лазера, они испускают красновато-зелёное свечение, которое можно увидеть невооруженным глазом

Учёные с помощью лазера впервые охладили жидкость

Ключевые слова:  Proceedings of the National Academy of Sciences, Лазер, Охлаждение, периодика, Физика

Опубликовал(а):  Доронин Федор Александрович

25 ноября 2015

Первый лазер, прибор для усиления света посредством вынужденного излучения, был изобретен в 1960 году, и всегда был известен как инструмент, который вырабатывает тепловую энергию — либо в качестве рабочего инструмента, либо как побочный эффект работы, либо в кинематографе как оружие для победы над межгалактическими врагами. Однако концентрированные пучки света, испускаемые лазером, никогда не были в состоянии охлаждать жидкость.

Физики из Университета Вашингтона стали первыми, кто смог заставить лазер охлаждать воду и другие жидкости. Об открытии сообщается в пресс-релизе университета.

В исследовании, результаты которого будут опубликованы в журнале Proceedings of the National Academy of Sciences (от ред. Paden B. Roder, Bennett E. Smith,Xuezhe Zhou, Matthew J. Crane, and Peter J. Pauzauskie Laser refrigeration of hydrothermal nanocrystals in physiological media), учёные использовали лазер, испускающий инфракрасный свет. С его помощью физики продемонстрировали совершенно новые свойства лазерного луча: он понизил температуру воды до 2,2 градуса по Цельсию.

Исследовательская группа создала установку, которая использовалась в качестве оптической ловушки. Внутри камеры с жидкостью лучами удерживался нанокристалл (цель). Освещая "охлаждающим" лазерным лучом микроскопический кристалл, взвешенный в воде, учёные заставляли последний генерировать излучение. Испускаемое свечение "забирало" у нанокристалла немного больше энергии, чем он получал от лазера. Благодаря этому процессу и сам кристалл, и окружающая его жидкость постепенно охлаждались.

Чтобы определить, охлаждается ли вода вокруг цели, приборы регистрировали тень нанокристалла. По мере того как жидкость теряет тепло, цель замедляет своё движение близ точки захвата в оптической ловушке. Наблюдая за малейшими изменениями в движении нанокристалла, физики смогли судить о падении температуры.

Исследователи также заставили кристалл менять свой цвет от голубовато-зелёного до красновато-зелёного по мере охлаждения. Этот эффект в дальнейшем можно будет использовать в качестве цветового индикатора температуры.

Физики США создавали свою установку с прицелом на работу с биологическими объектами, поэтому они выбрали для экспериментов именно инфракрасное излучение. Оно не вызывает "ожог" у клеток и прочих "живых" систем (в отличие от видимого света).

В ходе экспериментов учёные продемонстрировали, как созданный ими лазер может охладить солевой раствор и среду для культивирования клеток, которые обычно используются в генетических и молекулярных лабораторных опытах.

"Когда вы идете в кино смотреть "Звездные Войны", вы видите на экране, как лазерные бластеры в руках героев раскаляют и сжигают предметы. Мы же создали первый лазерный луч, который, наоборот, может охлаждать жидкость, такую как вода, в обычных повседневных условиях. Это нечто совершенно новое в науке", — рассказывает руководитель исследования Питер Паузовский (Peter J. Pauzauskie), доцент кафедры материаловедения и инженерии Университета Вашингтона.

Исследователи перечисляют множество областей, в которых может найти применение технология лазерного охлаждения. Например, микропроцессоры могут использовать лазерный луч для точечного охлаждения отдельных компонентов в компьютерных чипах, чтобы предотвратить их перегрев.

Биологи смогут использовать лазерный луч, чтобы целенаправленно охладить часть клетки во время того, как она делится, и отследить хромосомные изменения. Понижение температуры замедлит эти процессы, дав исследователям возможность увидеть детализированную картину происходящего.

Также можно остудить один нейрон — притормозить его деятельность, не повреждая, — чтобы увидеть, как соседи-нейроны будут обходиться без него и изменять свою работу.

"Используя технологию лазерного охлаждения, можно будет даже снять фильмы на тему "Замедленная жизнь в действии", — добавляет Паузовский. — А главное то, что вам не обязательно охлаждать всю клетку целиком, рискуя убить эту крошечную единицу жизни: достаточно будет направить луч на нужный участок".

Отметим, что, как правило, создание кристаллов для лазеров — так называемой активной среды, определяющей мощность лазера, — весьма дорогостоящий процесс, который требует много времени и может стоить больших денег.

Учёные Университета Вашингтона в ходе своего исследования показали, что для изготовления кристаллов для лазерных "холодильных установок" может быть использован гидротермальный синтез, который ускоряет и удешевляет производство, а также позволяет сделать его масштабируемым.

Пока команда исследователей Университета Вашингтона продемонстрировала эффект охлаждения только с одним нанокристаллом. В дальнейшем физики планируют начать тестирование технологии на нескольких кристаллах. Для этого потребуются лазеры большей мощности. Так как процесс лазерного охлаждения достаточно энергоёмкий, в будущем исследователи будут искать способы улучшения эффективности работы установки.

"Мы заинтересованы в идеях и предложениях других учёных или представителей сферы бизнеса, — отмечает Питер Паузовский, — для расширения области применения лазерного охлаждения с максимальной пользой для человечества".

Добавим, что процесс лазерного охлаждения впервые был продемонстрирован в условиях вакуума в Лос-Аламосской национальной лаборатории (LANL) в 1995 году, но прошло почти 20 лет до того момента, как учёные сумели наглядно продемонстрировать этот процесс в жидкостях


Источник: Вести. Наука



Комментарии
Палии Наталия Алексеевна, 25 ноября 2015 19:40 
почти 20 лет назад "Нобелевская премия по физике 1997 года присуждена группе исследователей - Стивену Чу, Уильяму Филипсу (США) и Клоду Коэн-Таннуджи (Франция) за работу по лазерному охлаждению атомов" -Подробнее см.: http://www.n...cles/10172/ (Наука и жизнь, НОБЕЛЕВСКИЕ ПРЕМИИ 1997 ГОДА. ОЧЕНЬ ХОЛОДНЫЕ АТОМЫ)
+ на официальном Нобелевском сайте http://www.n...eates/1997/
+ в разделе "Библиотека" НАНОМЕТРа видео "Постнаука.Выпуски: 262, 329, 334".

Известен эффект магнитного охлаждения. Фотон состоит из потоков отдельностей (квантов) электростатического и магнитного полей, фокусирующихся в динамический локус, "бегущий" по вектору распространения фотона. В данном случае, вероятно, магнитная составляющая фотонов ответственна за эффект охлаждения?
Палии Наталия Алексеевна, 27 ноября 2015 21:22 

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Флуоресценция наночастиц оксида церия
Флуоресценция наночастиц оксида церия

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
А.А.Семенова
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.