Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Учёные разработали два новых метода опреснения воды

Ключевые слова:  "шоковый" электродиализ, дисульфид молибдена, мембрана, опреснение воды, периодика

Опубликовал(а):  Палии Наталия Алексеевна

17 ноября 2015

image

Потребление воды в мире постоянно возрастает, и в некоторых густонаселённых регионах планеты её начинает не хватать. Проблема нехватки пресной воды уже не является прерогативой африканских пустынь. Несмотря на то, что Мировой океан покрывает 70% поверхности нашей планеты, питьевой воды на ней крайне мало. В Калифорнии из-за трёхлетней засухи недосчитались примерно годовой нормы осадков, из-за чего властям пришлось ввести ограничения на использование воды. В Китае строят одну из крупнейших станций по опреснению воды в Бохайском заливе рядом с городом Таншань.

Обычными способами опреснения воды являются обратный осмос — проталкивание воды через мембрану, задерживающую частицы соли, перегонка — кипячение с последующим сбором и охлаждением пара, или электродиализ – изменении концентрации электролитов в растворе посредством электрического тока. Эти способы крайне энергозатратны.

Опреснение шоком


Работа инженеров MIT с необычным методом опреснения под руководством профессора Мартина Базанта [Martin Bazant] опубликована в журнале Environmental Science and Technology. «Это фундаментально новый процесс разделения, отличающийся от всех остальных,- утверждает Базант. – Он обеспечивает безмембранное разделение ионов и молекул воды».

При обычном электродиализе в сосуде для разделения делают перегородки из полупроницаемых мембран. Фильтрующие мембраны пропускают воду и задерживают более крупные частицы соли. Эти мембраны расположены поочередно и разделяют общий объем на множество полостей. Через ванну с раствором пропускают постоянный электрический ток, который приводит ионы растворенных солей в движение.

Противоположно заряженные ионы движутся в противоположные стороны, но из-за того, что ванна заполнена препятствующими движению ионов мембранами, ионы задерживаются на ближайшей мембране, соответствующей их заряду, и остаются в полости между двумя мембранами. В результате между одной парой мембран происходит повышение концентрации ионов (эту воду сливают обратно в море), а между другой – понижение, то есть получается пресная вода.

image

В новом процессе, получившем название шоковый электродиализ, вода течёт через фритту – пористый керамический материал. С обеих сторон масса материала ограничена электродами. Достаточно сильный постоянный ток, протекающий между электродами, приводит к тому, что в потоке возникает ударная волна, чётко разделяющая поток на две части – в одной из которых течёт чрезвычайно солёная, а в другой — пресная вода. Остаётся только разделить потоки простой перегородкой.

В этом процессе не используются мембраны, ничего не засоряется и не требует очистки, при этом обеспечивается постоянный поток воды через недорогой в производстве материал. Эффект, лежащий в основе процесса, был открыт несколько лет назад учёными из Стэнфордского университета.

Специалисты из MIT утверждают, что процесс можно использовать не только для опреснения, но и для очистки воды. Например, в процессе проведения работ по гидравлическому разрыву пластов образуется много солёной и загрязнённой химикатами воды, которую можно было бы очищать подобным образом. К тому же, по утверждению учёных, электрический ток, необходимый для организации процесса, достаточно сильный для того, чтобы убивать бактерии и стерилизовать воду.

Тонкий подход к опреснению


Инженеры из Иллинойса, тем не менее, предлагают свой вариант опреснения воды путём фильтрации её через мембрану. Однако их мембрана из дисульфида молибдена имеет толщину всего в несколько нанометров. Инженеры из UIUC утверждают, что их фильтр энергетически гораздо более выгоден, чем обычные фильтры для обратного осмоса, которые требуют больших энергетических затрат.

Для опреснения воды через фильтры обычно требуется создавать большое давление, а мембраны быстро засоряются и требуют очистки или замены. Но по утверждению инженеров, давление, необходимое для опреснения воды, пропорционально толщине мембраны. Многие учёные даже пытались использовать для фильтрации воды графен, но столкнулись со специфическими трудностями при взаимодействии его с водой.

Инженеры из UIUC взяли дисульфид молибдена, поскольку в нём молибден находится в окружении двух атомов серы. В результате у тонкого «листа» MoS2 снаружи находится сера, а молибден – внутри. Если в таком листе сделать отверстие, вокруг него будет кольцо из атомов молибдена.

image

«Преимущества фильтра из MoS2 в том, что молибден притягивает воду, а сера – отталкивает, что обеспечивает высокую скорость прохождения воды через отверстие,- говорит Мухаммед Хейраньян [Mohammad Heiranian], автор работы. – Это свойство химически заложено в MoS2, поэтому его не нужно специально подготавливать или каким-то образом дорабатывать, в отличие от графена, где такая подготовка является очень сложным процессом».

Как будем опреснять?


Прогресс не стоит на месте, и новые технологии появляются очень быстро. Время покажет, какая из упомянутых идей пройдёт проверку реальностью. Возможно, что для повышения эффективности различные технологии будут использоваться вместе. Главное, чтобы в результате они дали много пресной воды как для питья, так и для пищи – ведь основными потребителями пресной воды являются фермерские хозяйства.

Вячеслав Голованов





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Оксидные горы, пирохлорные берега
Оксидные горы, пирохлорные берега

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

I МОСКОВСКАЯ ОСЕННЯЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ПЕРОВСКИТНОЙ ФОТОВОЛЬТАИКЕ
14-15 октября 2019 года состоится школа - конференция молодых ученых - I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019).

Золото России на Международной Химической Олимпиаде
30 июля в Париже завершилась 51-я Международная химическая олимпиада. Она была рекордной по числу участников - 309 школьников из более, чем 80 стран. Олимпиада прошла под девизом "Двигаем науку вместе" ("Make the science together"). Сборная России на олимпиаде завоевала 4 золотые медали и в медальном зачете поделила 1-2 место с командой Кореи. Победителями стали Михаил Матвеев (Вологда) и три москвича - Даниил Бардонов, Алексей Шишкин и Никита Чернов.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.