Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Теоретическое моделирование того, как должно происходить расширение треугольной зоны кварк-глюонной плазмы после столкновения гелия-3 с тяжелым ядром. Рисунок из статьи J. L. Nagle et al., 2014. Exploiting Intrinsic Triangular Geometry in Relativistic 3He+Au Collisions to Disentangle Medium Properties
Рис. 2. Иллюстрация эллиптического потока в поперечной плоскости. Слева: эллиптический поток приводит к тому, что частицы предпочитают вылетать вдоль какого-то направления в поперечной плоскости — возникает зависимость количества частиц от азимутального угла. Справа: если бы кварк-глюонная плазма не образовывалась, а частицы разлетались бы независимо, эта зависимости исчезает. Рисунок из T. Hirano et al., 2009. Hydrodynamics and Flow
Рис. 3. Геометрия столкновений протона, дейтрона, и гелия-3 с тяжелым ядром. Темно-синим цветом показаны предполагаемые «горячие зоны» — крошечные капли кварк-глюонной плазмы внутри ядра. Рисунок из доклада D. McGlinchey, 2014. Exploiting Intrinsic Triangular Geometry in Relativistic 3He+Au Collisions to Disentangle Medium Properties
Рис. 4. Величины v2 и v3, описывающие эллиптический и треугольный потоки адронов в центральных 3He+Au столкновениях, в зависимости от поперечного импульса адронов. Цветные кривые и полосы показывают предсказания разных моделей; все они учитывают образование и расширение кварк-глюонной плазмы. Изображение из обсуждаемой статьи в PRL

Крошечные капли кварк-глюонной плазмы образуются и в несимметричных ядерных столкновениях

Ключевые слова:  Physical Review Letters, Исследования, Кварк-глюонная плазма, периодика

Автор(ы): Игорь Иванов

Опубликовал(а):  Доронин Федор Александрович

26 октября 2015

До сих пор кварк-глюонная плазма встречалась физикам только в столкновениях двух тяжелых ядер высокой энергии. Считалось, что в несимметричных столкновениях, когда очень легкое ядро ударяет по тяжелому, нужных для кварк-глюонной плазмы условий достичь не удается. Однако коллаборация PHENIX, изучив столкновения ядер гелия-3 и золота, утверждает, что плазма образуется и тут, но только в маленьких, субъядерных объемах. Эти результаты подтверждают недавние догадки теоретиков о том, как этот процесс может происходить. Статья коллаборации опубликована в журнале Physical Review Letters, а ее предварительная версия доступна в архиве электронных препринтов arxiv.org.

Кварк-глюонная плазма — это такое состояние сильно взаимодействующей ядерной материи, в которой отдельные протоны и нейтроны словно растворяются друг в друге, и составляющие их кварки начинают свободно гулять по объему. Это состояние ядерного вещества может возникать при достаточно высоком давлении и температуре (примерно 2 трлн градусов, что в энергетических единицах отвечает энергии 200 МэВ). В таком состоянии находилась Вселенная спустя микросекунды после Большого взрыва, и примерно такое же состояние может до сих пор существовать в самом центре некоторых нейтронных звезд. Кроме того, теория сильно взаимодействующей материи предсказывает, что кварк-глюонная плазма должна вести себя как жидкость, а не газ. Ее положение на диаграмме «давление-температура» и детальное описание ее свойств — это своеобразный вызов современной теории сильных взаимодействий. Поэтому экспериментальное ее изучение позволит не только «заглянуть» в раннюю Вселенную или вглубь нейтронных звезд, но и лучше понять, как вообще устроено сильное взаимодействие, в том числе и внутри обычных ядер.

Именно с этой целью на специализированных ускорителях сталкиваются тяжелые ядра с большой энергией. Такие эксперименты проводились в 80–90-е годы в ЦЕРНе, на ускорителе SPS, и на рубеже веков в них стали появляться первые намеки на новое состояния вещества. Затем первенство захватил американский коллайдер тяжелых ионов RHIC, на котором в начале 2000-х кварк-глюонная плазма была окончательно открыта. Более того, в 2005 году совершенно неожиданно оказалось, что кварк-глюонная плазма ведет себя не просто как жидкость, а как жидкость идеальная, то есть практически с нулевой вязкостью — и это сразу подкинуло теоретикам пищи для размышлений. Наконец, с недавнего времени в игру вступил и Большой адронный коллайдер, который тоже иногда работает в режиме столкновения тяжелых ядер.

Надо сказать, что, несмотря на многочисленные эксперименты, долгое время не удавалось четко доказать, что кварк-глюонная плазма действительно возникает в ядерных столкновениях, пусть и на краткое мгновение в десятки йоктосекунд. Проблема тут в том, что, моментально расширившись и остыв, кварк-глюонная плазма распадается на отдельные адроны. Они разлетаются во все стороны, детектор их регистрирует и восстанавливает общую картину разлета, но он неспособен просто так определить, родились они сразу в виде адронного газа или же прошли через стадию горячей жидкости.

Опознать формирование кварк-глюонной плазмы можно разными способами. Прежде всего, внутри горячей ядерной «капельки» должны быть настоящие гидродинамические течения. После распада плазмы на адроны, они должны проявиться в виде адронных эллиптических потоков и потоков более сложной формы (рис. 1 и 2). Существуют и более тонкие эффекты, например гашение струй, когда они пытаются продраться сквозь кварк-глюонную плазму, и плавление адронов внутри горячей плазмы.

Когда в начале 2000-х коллайдер тяжелых ионов RHIC сталкивал разные ядра, то работавшие на нем коллаборации PHENIX и STAR видели проявления кварк-глюонной плазмы в столкновении двух ядер золота (Au+Au), но не видели их в несимметричных столкновениях легчайшего ядра дейтерия с золотом (d+Au). Это интерпретировалось так: для возникновения плазмы требуется «всадить» в ядро достаточно энергии, чтобы по всему объему ядра произошло плавление протонов и нейтронов. Столкновение Au+Au этот порог преодолевает, а d+Au — нет.

В 2011–2012 годах детектор PHENIX был существенно модернизирован, в него были доустановлены новые компоненты, которые позволили ему собирать больше данных при столкновениях лоб в лоб, а также лучше измерять свойства адронов. В 2013 году новые эксперименты по столкновению d+Au уже показали некоторые намеки на коллективные эффекты, которые напоминают следы кварк-глюонной плазмы. Да и Большой адронный коллайдер, сталкивавший протоны с ядрами свинца, тоже обнаружил некоторые корреляции адронов. Все эти новые данные как-то не слишком вязались с общим утверждением, что в таких несимметричных столкновениях выделившейся энергии недостаточно для плавления ядра.

Обсуждая эти не вполне ясные закономерности, физики задумались о такой возможности: а может ли оказаться, что плавление ядра и образование кварк-глюонной плазмы происходит не во всем ядре, а только в маленькой «горячей зоне», в месте непосредственного удара протона по ядру? В 2014 году было опубликовано конкретное предложение по проверке этой идеи (J. L. Nagle et al., 2014. Exploiting Intrinsic Triangular Geometry in Relativistic 3He+Au Collisions to Disentangle Medium Properties). Авторы предлагали экспериментаторам провести серию экспериментов по столкновению протона, дейтрона и гелия-3 с тяжелым ядром и измерить азимутальные характеристики разлетающихся адронов.

Если при ударе каждого нуклона большой энергии по ядру действительно образуется канал кварк-глюонной плазмы, то зона плавления будет иметь вид, как на рис. 3. А это значит, что при переходе от протона к дейтрону резко увеличится эллиптический поток, а при переходе к гелию-3 — «треугольный». На рис. 1 показаны результаты теоретического моделирования того, как должна расширяться текущая кварк-глюонная плазма и какие скорости приобретут адроны после ее распада. Вычисления показали, что такой треугольный поток должен проявиться даже несмотря на то, что ему при расширении придется продираться сквозь нерасплавившуюся часть ядра. Если же корреляции не связаны с образованием кварк-глюонной плазмы, а возникают, например, из-за особого состояния ядер до столкновения (скажем, как в модели плазмы), то такой сильной закономерности наблюдаться не должно.

И вот совсем недавно эксперимент PHENIX выполнил ключевой из трех предложенных экспериментов (данные по d+Au уже имеются, а по p+Au появятся позднее). В ходе столкновений гелия-3 с ядрами золота на коллайдере RHIC в 2014 году было накоплено примерно полмиллиарда событий с большим числом рожденных частиц, что отвечает столкновениям лоб в лоб. Распределение рожденных частиц по азимультальному углу и по поперечному импульсу было измерено с очень высокой точностью, что позволило надежно выделить компоненты, описывающие эллиптический и треугольный потоки. Для устранения систематических погрешностей проводилось сравнение с более ранними результатами того же коллайдера по протон-протонным столкновениям, где эллиптического и треугольного потоков не должно было быть.

На рис. 4 показаны результаты по измерению эллиптического и треугольного потоков в столкновениях 3He+Au. Их интенсивность характеризуется коэффициентами v2 и v3. В согласии с предсказаниями разнообразных моделей, учитывающих гидродинамические течения при образовании и разлете кварк-глюонной плазмы, оба этих коэффициента растут с поперечным импульсом адронов. Между самими этими моделями есть некоторые различия, но они все, за исключением одной, корректно воспроизводят тренд. Попытки описать эти данные без учета кварк-глюонной плазмы дали бы намного меньшие значения для треугольного потока.

Полученное согласие является сильным указанием на то, что в тот момент, когда встречный нуклон — не важно, один или в составе встречного ядра, — вонзается в ядро на большой энергии, он плавит ядерную материю в месте попадания. На мгновение там образуется крошечная капелька кварк-глюонной плазмы. Если встречное ядро было большое, то все эти капли сливаются и приводят к плавлению ядер целиком — это именно то, что наблюдалось раньше. Но даже если ядро маленькое, как в случае гелия-3, локальное плавление все равно происходит, просто капля кварк-глюонной плазмы остается крошечной, субъядерных масштабов. Таким образом и без того сложная многоэтапная картина столкновений релятивистских ядер дополняется еще одной подробностью.

Все это выглядит очень интригующе и порождает вопрос: а какова минимальная ядерная система, в которой способна возникнуть кварк-глюонная плазма? Выражаясь простым языком, какова самая маленькая капля кварк-глюонной плазмы? Если она возникает в столкновении 3He+Au, может ли она образоваться при сильном ударе протоном по тяжелому ядру? А в столкновениях двух протонов сверхвысоких энергий? А тот любопытный хребет в распределении адронов в событиях с экстремально большим количеством рожденных адронов, который Большой адронный коллайдер обнаружил еще в 2010 году, — он точно никак не связан с кварк-глюонной плазмой?

Все эти вопросы можно объединить в одну группу: вопросы о происхождении коллективных эффектов в малых адронных коллективах. Они сейчас все больше интересуют физиков; достаточно упомянуть недавний краткий обзор результатов PHENIX на эту тему, а также то, что на прошедшей недавно конференции Quark Matter 2015этот круг вопросов был вынесен в отдельную секцию. Будущие результаты PHENIX и других экспериментов вкупе с более отточенными теоретическими расчетами позволят разобраться с ними получше.

Источник: A. Adare et al. (PHENIX Collaboration). Measurements of Elliptic and Triangular Flow in High-Multiplicity 3He+Au Collisions at sqrt(s)=200 GeV // Phys. Rev. Lett. V. 115. 142301 (28 September 2015); статья также доступна в архиве е-принтов.

См. также:
1) И. М. Дремин, А. В. Леонидов. Кварк-глюонная среда // УФН. 180, 1167–1196 (2010).
2) Discovery of QGP — подборка ссылок по открытию кварк-глюонной плазмы.


В статье использованы материалы: Элементы




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Золотая рыбка
Золотая рыбка

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.