Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Разработана технология создания квантового процессора на основе кремния

Ключевые слова:  Квантовый бит, Квантовый компьютер, Кремниевый транзистор, Кремний, периодика

Опубликовал(а):  Доронин Федор Александрович

14 октября 2015

Австралийские исследователи впервые изготовили один из ключевых элементов квантового компьютера из кремния. Они также показали, что два кремниевых транзистора, действующие в роли квантовых битов (или кубитов), могут выполнять сверхбыстрые расчёты.

Напомним, что кубиты, в отличие от классических битов, могут принимать не только значения 1 или 0, но и все промежуточные одновременно (в силу своей квантовой природы). В результате пять запутанных кубитов могут хранить и обрабатывать столько же информации, что и 32 (2 в пятой степени) классических бита, 10 запутанных кубитов = 1000 классических бита, а 300 кубитов могут быть соотнесены с таким количество битов, сколько атомов во всей Вселенной. Соответственно, и производительность квантовых компьютеров на основе кубитов значительно выше, чем у классических компьютеров на кремниевых схемах.

Ранее кубиты реализовывали в довольно дорогих и экзотических материалах (например, на основе сверхпроводников, как это сделали российские учёные) и в небольшом количестве. Кроме того, всю систему надо было охлаждать до температур близких к абсолютному нулю.

Кремний же является дешёвым, распространённым материалом, который сегодня повсеместно используется в электронной промышленности. Производство кремниевых схем поставлено на поток, а значит, достижение австралийцев делает мечту о повсеместном использовании квантовых компьютеров ближе к реальности.

Команда, возглавленная Эндрю Дзураком (Andrew Dzurak) из Университета Нового Южного Уэльса в Сиднее, создала так называемый CNOT логический вентиль на основе кремниевых транзисторов. Он может стать частью квантового чипа, который будет производить вычисления.

В новом устройстве кремниевые кубиты изолированы друг от друга для сохранения стабильности состояния. Каждый представляет собой стандартный транзистор, правда, способный хранить только один электрон. Спин электрона кодирует 1 или 0, а внешнее микроволновое поле и ток контролируют кубиты и заставляют их взаимодействовать нужным образом.

Пока на руках у исследователей пара таких кубитов, но можно масштабировать это решение и создать последовательность из множества кубитов, что позволит производить всё более и более сложные расчёты. Команда Дзурака уже запатентовала дизайн чипа, содержащего миллионы таких кубитов. Впрочем, до того как полноценное решение будет создано пройдёт не менее 10-20 лет.

"Мы продемонстрировали двухкубитную логическую схему – центральный строительный блок квантового компьютера, и, что важно, выполнили его из кремния. Мы используем, по сути, ту же технологию, что и при создании существующих компьютерных чипов, так что изготовить полномасштабный процессор на основе этой методики будет гораздо проще, нежели с помощью каких бы то ни было экзотических технологий, – комментирует Дзурак. – Таким образом, создание квантового компьютера становится более осуществимым, ведь оно основано на той же технологии производства, что и вся современная компьютерная индустрия".

Полномасштабный квантовый процессор, как считается, найдёт применение в самых различных областях – от финансов, страхования и здравоохранения до автоматизированного проектирования фармацевтических соединений и быстрого поиска информации в больших объёмах данных.

Проблема данной разработки в том, что она, как и предшественники, может функционировать лишь при очень низких температурах – около 1 Кельвина (минус 272 градуса по Цельсию). Впрочем, авторы работы отмечают, что современные технологии и в этой сфере не стоят на месте, и холодильники последнего поколения вполне в состоянии поддерживать такие температуры.

Подробности работы австралийских учёных были опубликованы изданием Nature (от ред. статья A two-qubit logic gate in silicon M. Veldhorst, C.H. Yang, J.C.C. Hwang, W. Huang, J.P. Dehollain, J.T. Muhonen, S. Simmons, A. Laucht, F.E. Hudson, K.M. Itoh, A. Morello,A.S. Dzurak. Nature (2015) doi:10.1038/nature15263)



Источник: Вести. Наука



Комментарии
Палии Наталия Алексеевна, 14 октября 2015 13:41 

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Ёлки-палки!
Ёлки-палки!

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.