Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Ученые Университета ИТМО на пути к созданию сверхбыстрого оптического транзистора на основе одной наночастицы

Ключевые слова:  лазер, наночастица, транзистор

Опубликовал(а):  Палии Наталия Алексеевна

14 сентября 2015

Производительность современных компьютеров, в которых носителем сигнала выступают электроны, во многом ограничена временем переключения транзистора – порядка 0.1-1 наносекунды (10−9 секунды). Предполагается, что в оптических компьютерах сигнал, переносимый фотонами, сможет вместить в себя куда больше информации, чем стандартный электрический сигнал. По этой причине развитие оптических компьютеров невозможно без создания сверхбыстрого оптического транзистора, то есть миниатюрного устройства, которое будет успевать управлять прохождением полезного светового сигнала за счет внешнего управляющего сигнала в пределах нескольких пикосекунд (10−12 секунды).

В работе группа российских ученых из Университета ИТМО, Физического института им. П.Н. Лебедева РАН и Академического университета в Санкт-Петербурге предложила концептуально новый подход к вопросу разработки такого транзистора, сделав его прототип всего из одной кремниевой наночастицы. Результаты своей работы ученые опубликовали в престижном научном журнале Nano Letters (от ред. статья Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron–Hole Plasma / Sergey Makarov, Sergey Kudryashov, Ivan Mukhin, Aleksey Mozharov, Valentin Milichko, Alexander Krasnok, and Pavel Belov //Nano Lett., 2015, 15 (9), pp 6187–6192; DOI: 10.1021/acs.nanolett.5b02534).

Ученые обнаружили, что могут радикально менять свойства кремниевых наночастиц, облучая их интенсивными сверхкороткими импульсами лазера. Под воздействием излучения внутри частицы формируется плотная и быстро релаксирующая электронно-дырочная плазма, наличие которой сильно меняет диэлектрическую проницаемость кремния на несколько пикосекунд. Это резкое изменение в структуре наночастицы, вызываемое лазерным импульсом, приводит к возможности управлять направленностью рассеянного частицей падающего света. Так, в зависимости от мощности управляющего лазерного импульса наночастица может перестать рассевать свет назад и начать рассеивать его вперед, выполняя таким образом функцию оптического переключателя.

«До сих пор ученые в основном пытались создать оптические нанотранзисторы, управляя поглощением наночастиц, что, в сущности, тоже логично – в режиме высокого поглощения частица почти не пропускает световой сигнал, а в режиме низкого поглощения пропускает. Однако этот подход пока не оправдал ожиданий,– рассказывает первый автор статьи и старший научный сотрудник лаборатории Сергей Макаров. – Наша концепция отличается тем, что мы предлагаем управлять не поглощением, а диаграммой направленности частицы. Иными словами, в обычном режиме частица, например, рассеивает почти весь свет назад, но как только частица получает более интенсивный управляющий сигнал, она начинает перестраиваться и рассеивать вперед».

Выбор кремния в качестве материала для транзистора не был случайным. Реализация оптического транзистора требует использования недорогих материалов, подходящих для массового производства и способных за несколько пикосекунд (в режиме плотной электронно-дырочной плазмы) менять свои оптические свойства и при этом почти не нагреваться.

«Время переключения между режимами работы нашей наночастицы составляет всего несколько пикосекунд, а приводим в рабочий режим мы ее за десятки фемтосекунд (10−15 секунды). Сейчас у нас на руках уже есть предварительные экспериментальные данные, свидетельствующие о том, что частица сможет успешно играть роль оптического транзистора. Теперь в наших планах провести эксперименты, где наряду с управляющим лазерным лучом будет и полезный сигнальный луч», –подводит итог соавтор статьи, заведующий кафедрой Нанофотоники и метаматериалов Университета ИТМО Павел Белов.

Стандартный полупроводниковый транзистор является одним из основных строительных блоков современных электронных устройств. Именно разработка транзистора в 1947 году ознаменовала начало цифровой революции, заменив громоздкие и малоэффективные вакуумные трубки в телевизорах, радио и других устройствах. Изобретатели первого полупроводникового транзистора Уильям Брэдфорд Шокли, Джон Бардин и Уолтер Браттейн были вознаграждены за свою работу Нобелевской премией 1956 года. Ценность транзисторов обуславливается их способностью усиливать и переключать сигналы в электронных схемах, а также формировать логические вентили. Сверхбыстрый наноразмерный оптический транзистор способен дать аналогичный толчок развитию устройств на основе оптической передачи сигнала.

Напомним, что сотрудники лаборатории нанофотоники и метаматериалов Александр Краснок и Павел Белов, принявшие участие в этом исследовании, недавно выступили с опровержением открытия британских ученых из Кембриджского университета, заявивших, что им удалось найти недостающее звено в теории электромагнетизма.

_________________________________________________

от ред. препринт статьи доступен на Arxiv.org


Источник: Nano Letters, ИТМО




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Слоистый металл-интерметаллидный композит Ti-Al-Ni-Al
Слоистый металл-интерметаллидный композит Ti-Al-Ni-Al

Периодическую таблицу Менделеева опять улучшили: наночастицы пятивалентного плутония
Соединения шестивалентного плутония в щелочной среде могут привести к кристаллизации фазы (NH4)PuO2CO3, которая стабильна в течение нескольких месяцев и содержит пятивалентный плутоний. Получение новой фазы пятивалентного плутония фундаментально интересно и открывает новые возможности в разработке более эффективных технологий переработки радиоактивных отходов.

MAPPIC 2019. Второй день
15 октября 2019 года прошел второй день I Московской осенней международной конференции по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

MAPPIC 2019. Первый день
14 октября 2019 года успешно открылась I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.