Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Компьютер на квантовых вихрях

Ключевые слова:  Исследования, Квантовые вихри, МФТИ, Фазовые переходы

Опубликовал(а):  Доронин Федор Александрович

14 сентября 2015

Ученые МФТИ подобрались к пониманию свойств странных материалов, овладение которыми обещает принципиально новые подходы в создании новой электроники. Квантовые вихри и фазовые переходы, созданные ими, помогут в будущем отказаться от транзисторов.

Международная группа физиков, среди которых руководитель лаборатории «Топологические квантовые явления в сверхпроводящих системах» МФТИ Александр Голубов, представила на страницах журнала Science экспериментальное исследование явления, которое может использоваться для построения принципиально новой электроники.

Это явление — так называемый моттовский переход, превращение диэлектрика в проводник.

Исследователи из Нидерландов, Великобритании, Италии, США и России провели серию экспериментов с моттовскими изоляторами. Согласно зонной теории проводимости, эти материалы должны были быть проводниками электрического тока, однако на практике они оказываются диэлектриками. В общих чертах механизм, объясняющий эту аномалию, физикам известен, однако полной теории моттовских изоляторов пока нет. Как такие материалы превращаются из изоляторов в проводники, тоже до конца не ясно.

В то же время, по предварительным оценкам, такой эффект способен открыть путь к более быстрым компьютерам. Моттовский переход происходит под действием ряда факторов, включающих магнитное поле, за счет которого им можно управлять извне, пропуская или останавливая электрический ток в нужном месте. Такая схема могла бы заменить обычные транзисторы и при этом оказаться быстрее и компактнее:

но для ее реализации нужна теория моттовского перехода.

Такая теория относится к числу фундаментальных концепций, объясняющих электрические свойства вещества. И она имеет непосредственное отношение не только к поведению моттовского изолятора, но также к сверхпроводимости и основам спинтроники, технологии, которая предполагает управление спинами электронов.

Спином частиц физики называют квантовую величину, которая проявляет себя при взаимодействии частицы с магнитным полем. Спин играет фундаментальную роль в квантовой физике, поскольку без его учета невозможно описать ни поведение электронов в атомах, ни феномен намагничивания материалов, ни строение молекул.

Сверхпроводимость со спинтроникой относятся к тем направлениям, где можно ожидать радикальных технологических прорывов,

поэтому понимание природы моттовского перехода важно не только с точки зрения чистой теории.

В новом исследовании физики использовали специальную модель, которая позволяла изучать квантовые процессы в моттовском изоляторе при помощи так называемых магнитных вихрей. В этой модели, предложенной в 1993 году Валерием Винокуром и Дэвидом Нельсоном, внутри сверхпроводящего материала создаются квантовые вихри из электрического тока, и такие вихри сами по себе можно рассматривать как носители заряда.

Причем, что особенно важно, в работе Винокура и Нельсона говорилось о фазовых переходах вещества из одного состояния в другое —

сверхпроводник с магнитными вихрями вел себя то как сверхтекучая жидкость, то как стекло, в котором электрический ток распространяться не может.

Варьируя температуру и магнитное поле, ученые переводили образец из одного состояния в другое, и именно эти наблюдения вкупе с рядом более новых данных были положены в основу нового исследования.

Для нового эксперимента ученые изготовили на кремниевой пластине квадратную матрицу из 300 х 300 ниобиевых «островков» диаметром около 220 нанометров и подвели к ней золотые и ниобиевые контакты. Образец изготовили стандартными методами фотолитографии и затем поместили в криостат, охладив до 1,4 кельвина, ниже температуры перехода ниобия в сверхпроводящее состояние.

Ниобиевые «островки» стали сверхпроводниками, в них сформировались магнитные вихри, и далее исследователи проанализировали поведение системы в различных условиях.

В частности, они измерили сопротивление образца и обнаружили, что эта величина меняется нелинейно с ростом магнитного поля. С теоретической точки зрения полученные результаты означают то, что моттовский переход действительно можно представить как превращение вещества из жидкого состояния в газ, что открывает дополнительные возможности для анализа феномена с позиций термодинамики.

Причем разработанная учеными экспериментальная схема делает дальнейшие эксперименты сравнительно простыми, поскольку для них достаточно стандартных методов фотолитографии и температур, сравнимых с температурой жидкого гелия.

Такие низкие температуры, кстати, уже научились получать без использования дорогого жидкого гелия, и в прошлом году в МФТИ запустили установку в лаборатории Междисциплинарного центра фундаментальных исследований.


Источник: Газета.ру



Комментарии
Палии Наталия Алексеевна, 14 сентября 2015 19:44 
Такие низкие температуры, кстати, уже научились получать без использования дорогого жидкого гелия - см. здесь
Палии Наталия Алексеевна, 14 сентября 2015 19:46 
Статья доступна на Arxiv.org (Critical behavior at the dynamic Mott transition /Nicola Poccia, Tatyana I. Baturina, Francesco Coneri, Cor G. Molenaar, X. Renshaw Wang, Ginestra Bianconi, Alexander Brinkman, Hans Hilgenkamp, Alexander A. Golubov, Valerii M. Vinokur)

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Монодисперсные нанокластеры серебра и их оптические свойства
Монодисперсные нанокластеры серебра и их оптические свойства

Премии Правительства Москвы молодым ученым за 2019 год
Объявлены лауреаты премии Правительства Москвы молодым ученым за 2019 год. Премией отмечены 50 работ молодых столичных ученых. Среди лауреатов 12 сотрудников МГУ имени М.В.Ломоносова. Конкурс на получение премий Правительства Москвы молодым ученым проводится с 2013 года. Торжественное награждение победителей состоится 7 февраля 2020 года в Государственном Кремлевском дворце.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Перерождение кремния: от полупроводника к металлу. Морская губка – основа для создания новых наноструктурных композитов. Нитрид-борные аналоги углеродных колец. Лучшие научные сюжеты года по версии APS. Сверхпроводимость ставит новый температурный рекорд. Звук переносит массу? Всяко-разно.

Наносистемы: физика, химия, математика (2019, том 10, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume10/10-6
Там же можно скачать номер журнала целиком.

Да пребудет с вами сила плазмонов!
А.А.Семенова, Э.Н.Никельшпарг, Е.А.Гудилин, Н.А.Браже
Ученые Московского университета приблизились к решению проблем современной медицинской диагностики с использованием единичных клеток и их органелл путем разработки новых неинвазивных оптических методов анализа.

Юрий Добровольский: «Через 50 лет вся энергия будет вырабатываться биоорганизмами»
Андрей Бабицкий, Юрий Добровольский
Главный редактор ПостНауки Андрей Бабицкий побеседовал с химиком Юрием Добровольским о науке о материалах, будущем энергетики и новых аккумуляторах

Константин Жижин, член-корреспондент РАН: «Бор безграничен»
Наталия Лескова
Беседа с К.Ю. Жижиным, заместителем директора Института общей и неорганической химии им. Н.С. Курнакова по научной работе, главным научным сотрудником лаборатории химии легких элементов и кластеров.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.