Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Лазер заставил наноалмазы левитировать в вакууме
(фото J. Adam Fenster/University of Rochester).

Наноалмазы, содержащие NV-центры, светятся и левитируют в ходе эксперимента с использованием лазера
Лазер заставил наноалмазы левитировать в вакууме
(фото J. Adam Fenster/University of Rochester).

Леви Неукирч и Ник Вамивакас в своей лаборатории при университете Рочестера

Левитация наноалмазов в вакууме

Ключевые слова:  NV-центры, Квантовые системы, Лазеры, Наноалмазы, Фотолюминесценция

Опубликовал(а):  Доронин Федор Александрович

14 сентября 2015

Физикам впервые удалось заставить наноалмазы левитировать в вакууме. Исследовательская группа во главе с Ником Вамивакасом (Nick Vamivakas) из университета Рочестера надеется, что эта работа поможет в дальнейшем при изготовлении чрезвычайно чувствительных приборов для измерения крайне малых сил, а также для создания крупномасштабных квантовых систем.

Прежде исследователи уже помещали некоторые типы наночастиц в вакуумные ловушки, однако они не были активированы оптически. В новом же эксперименте наноалмазы содержали азото-замещённые вакансии (NV-центры), которые излучают свет при переходе в возбуждённое состояние и имеют спиновое квантовое число равное единице.

Новая работа демонстрирует, что левитация наноалмазов может быть осуществима не только в воздухе, как это делалось раньше, но и в вакууме. Это оценивается как "важнейший шаг вперёд по сравнению с предыдущими экспериментами с оптической манипуляцией наноалмазами".

Наноалмазы, захваченные при атмосферном давлении, непрерывно сталкиваются с молекулами воздуха вокруг них и возбуждаются. Захват алмазов в вакууме сводит на нет эффект любого воздействия молекул окружающих газов.

"Это позволяет нам механически управлять ими, — говорит Леви Неукирч (Levi Neukirch), ведущий автор исследования. — Наноалмазы фактически превращаются в маленькие гармонические осцилляторы. Мы можем измерить положение алмаза в трёхмерном пространстве и сгенерировать сигнал обратной связи в зависимости от положения и скорости движения наноалмаза. Таким образом можно заглушать его колебания".

Как рассказывают автор исследования, эксперимент проводился путём изменения эффективного потенциала. Чтобы понять, что это такое, учёные предлагают представить алмаз "сидящим" в низине: он может легко закатываться на гору, но, в конечном счёте, всё равно скатиться вниз к подножию.

Исследователи создали особый механизм обратной связи, который делает гору крутой, когда наноалмаз закатывается наверх, но она становится пологой, когда алмаз катится вниз. Теоретически, в конечном итоге это должно привести к тому, что уже у самого подножия горы наноалмаз начинает колебаться то вверх, то вниз. А в таком случае система начнёт вести себя как квантовомеханический осциллятор.

В ходе предыдущих экспериментов алмазы ярко сияли, так как содержали сотни NV-центров, которые начинали излучать свет после того, как их возбуждали лазером. В алмазах, использованных в новом эксперименте, было всего несколько NV-центров (в некоторых алмазах — всего один). С помощью единичного спина в NV-центре и системы, функционирующей в качестве квантовомеханического осциллятора, учёные должны повлиять на спиновое состояние крошечного дефекта внутри наноалмазов, что позволит управлять и всем наноалмазом.

Чтобы осуществить это на практике, вся система должна находиться в вакууме, а также в условиях низкого давления — притом гораздо более низкого, чем можно достичь в лабораторных условиях. Основная проблема заключается в том, что наноалмазы попросту разрушаются при столь низких давлениях.

Попытавшись разрешить эту проблему, учёные заменили обычные наноалмазы наноалмазами, которые были заключены в кварцевую оболочку. Это позволило придать им сферическую форму и сделать их однородными, хоть проблемы такая оболочка и не решила. Учёные отмечают, что это поможет им в будущих экспериментах.

Для того, чтобы измерить и контролировать систему, исследователи использовали два отдельных лазера: один создаёт ловушку для наноалмазов, другой — возбуждает NV-центры. Когда дефекты переходят от возбуждённого состояния к более низкоэнергетическому состоянию, они испускают фотон. Этот процесс известен как фотолюминесценция.

Фотолюминесценция позволяет исследователям определить по энергии излучаемого фотона энергетическую структуру системы, а также контролировать и изменять энергию этой системы. Так и осуществляется "левитация".

Прежде, чем исследователи смогут достичь своей окончательной цели и вернуть наноалмазы к первоначальному энергетическому состоянию, они должны будут выяснить, как предотвратить разрушение наноалмазов при низком давлении.

"Мы продемонстрировали способность контролировать спин NV-центров в левитирующих наноалмазах. Но нам ещё многое сделать", — заключает Неукирч.

Левитирующие в вакууме наноалмазы могут быть использованы для измерения "чрезвычайно малых сил или крутящих моментов", как поясняют исследователи: поскольку наноалмазы, по сути, играют роль наноосцилляторов, на их положение будет воздействовать абсолютно любая, даже самая слабая сила, и её можно будет зарегистрировать и измерить.

Описание эксперимента было опубликовано в журнале Nature Photonics.


Источник: Вести. Наука



Комментарии
Палии Наталия Алексеевна, 15 сентября 2015 23:18 

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Танцующая магнитная жидкость (видео)
Танцующая магнитная жидкость (видео)

Коллекция статей в Frontiers in Chemistry, посвященная Международному Году Периодической Таблицы Элементов
Открыт прием статей в коллекцию Frontiers in Chemistry (Open Access, IF 4.155), посвященной 150 - летию Периодической Таблицы Элементов.

Рейтинг МГУ
По сообщению пресс - службы МГУ, в международном образовательным рейтинге Quacquarelli Symonds (QS) Московский государственный университет имени М.В.Ломоносова укрепил лидирующие позиции, поднявшись с 90-й строчки на 84-ю. МГУ стал единственным отечественным вузом, попавшим в топ-100 ведущих университетских центров планеты.

12 конференция по нанотоксикологии в Зальцбурге
9, 10 и 11 - 13 сентября 2019 года в Зальцбурге (Австрия) состоится уникальное событие - первый международный научный форум для молодых ученых (International Young Scientist Forum) в рамках 12 международной конференции по нанотоксикологии, а также сама ежегодная конференция. Конференцию посетит команда РФ, отобранная в рамках конкурса National Student Team Contest XIII Всероссийской олимпиады по нанотехнологиям, а также приглашаются к участию все желающие.

Новые гибридные перовскитоподобные материалы для солнечной энергетики
Тарасов Алексей Борисович, Постнаука
Как сохранить энергию солнца или ветра? Как может измениться стационарная энергетика в будущем? В проекте «Мир вещей. Из чего сделано будущее» совместно с Фондом инфраструктурных и образовательных программ (группа РОСНАНО) Постнаука рассказывает о последних открытиях и перспективных достижениях науки о материалах.

Материалы к защитам квалификационных работ бакалавров на ФНМ МГУ в 2019 году
Коллектив авторов
4-7 июня 2019 г. (11-00) в аудитории 221 корпуса Б пройдут защиты ВКР бакалавров ФНМ МГУ.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2019 году
Семенова Анна Александровна
21-24 мая 2019 года в лабораторном корпусе Б пройдут защиты магистерских диссертаций выпускниками ФНМ МГУ.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.