Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Структура соединений в при различных количества атомов углерода © Yan-Ling Li et al. / Nature Communications
Предсказанные кристаллические структуры соединений Ca-C. © Yan-Ling Li et al. / Nature Communications

Пять новых карбидов кальция: уникальные восстановители и новые способы синтеза углеводородов

Ключевые слова:  Nature Communications, Исследования, Карбид кальция, Компьютерное моделирование, структура

Опубликовал(а):  Доронин Федор Александрович

28 июля 2015

Группа ученых под руководством Артема Оганова из МФТИ с помощью компьютерного моделирования «предсказала» пять абсолютно новых соединений углерода и кальция и получила два из них в эксперименте — новые материалы обладают крайне разнообразными химическими и физическими свойствами. Статья с результатами исследования опубликована в журнале Nature Communications. С карбидом кальция или просто «карбидом» сталкивались все, кто застал позднесоветскую эпоху: белые камушки, из которых получали ацетилен для газосварки и которые так эффектно шипели в лужах, были главным элементом дворовых химических экспериментов. Сегодня карбид кальция CaC2 используется по-прежнему: для промышленного производства ацетилена (хотя во дворах его уже не найдешь, для газосварки теперь используют готовый ацетилен в баллонах) и производства удобрений. Известен также более экзотический вариант соединения кальция и углерода — гексакарбид кальция CaCsub>6, который становится сверхпроводником при довольно высокой температуре — 11,5 кельвина. Теперь ученые обнаружили, что разнообразие соединений углерода и кальция не исчерпывается этими двумя веществами. С помощью компьютерного моделирования они выяснили, что при определенных условиях существуют еще как минимум пять других карбидов. Группа Оганова специализируется на поиске «невозможных» соединений, которые могут существовать вопреки известным химическим законами. С помощью созданного Огановым алгоритма моделирования химических соединений USPEX они предсказали существование «нестандартной» соли — соединений натрия и хлора, которые нарушали все химические законы: NaCl3, NaCl7, Na3Cl2, Na2Cl и Na3Cl, — а затем получили эти соединения в экспериментах. Они также открыли несколько нестандартных оксидов алюминия, оксидов магния и ряд других веществ.

Соединения кальция и углерода привлекли внимание Оганова и его коллег тем, что оба эти элемента показывают большое разнообразие структурных и электронных свойств при разных давлениях. В частности, кальций при давлении 216 гигапаскалей демонстрирует наивысшую температуру перехода в сверхпроводящее состояние для чистых элементов (29 кельвинов). Ученые с помощью компьютерного алгоритма USPEX проанализировали все возможные карбиды кальция, которые возникают при давлении от нормального до 100 гигапаскалей. Они обнаружили пять таких веществ: Ca5C2, Ca2C, Ca3C2, CaC и Ca2C3. Как показали расчеты, Ca2C3 остается стабильным при давлении ниже 28 гигапаскалей, Ca5C2 — выше 58 гигапаскалей, Ca2C — выше 14 гигапаскалей, Ca3C2 — с 50 гигапаскалей, CaC — с 26 гигапаскалей, а CaC2стабилен выше 21 гигапаскалей. Кристаллическая структура этих соединений содержит углеродные постройки, которые варьируются от «гантелей», до «лент» и «слоев», состоящих из шестигранников. Наиболее интересным соединением оказался Ca2C, который по своей структуре и свойствам является, как и графен, двумерным металлом. Графен — углеродный материал, за создание которого Андрею Гейму и Константину Новоселову была присуждена Нобелевская премия. Но, в отличие от графена, в Ca2C ток проходит по слоям атомов кальция, а не углерода, и в кальциевых слоях присутствуют сгустки «ничейных» электронов. Чтобы подтвердить теоретические предсказания, группа Оганова провела эксперимент по синтезу предсказанных веществ. Исследователи поместили смесь кальция и углерода в так называемую ячейку с алмазными наковальнями — камеру, в которой образец вещества сжимается между двумя алмазами. В такой камере давление может достигать сотен гигапаскалей. При давлении более 10 гигапскалей и температуре около 2000 кельвинов ученые зафиксировали образование Ca2C3, а при давлении более 22 гигапаскалей — образование Ca2C. Их теоретически предсказанная структура была подтверждена с помощью синхротронного излучения. «Эти необычные вещества могут найти себе практические применения, если удастся синтезировать их в достаточных количествах», — говорит Оганов. Так, например, двумерные карбиды, где есть «неприкаянные» электронные сгустки — уникальные восстановители — можно применить в химической промышленности, а карбиды, где есть группы из трех и более атомов углерода, — для синтеза необычных углеводородов, полагает ученый. Ссылка на статью. DOI:10.1038/ncomms7974


Источник: Импульс



Комментарии

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нанолабиринт
Нанолабиринт

Начинается XV Олимпиада "Нанотехнологии - прорыв в будущее!"
Совсем скоро начнется юбилейная XV Всероссийская Интернет-олимпиада по нанотехнологиям «Нанотехнологии – прорыв в будущее!». Предлагаем ознакомиться с актуальной информацией и расписанием Олимпиады.

В России стартовал самый масштабный научно-популярный фестиваль
РГ: В МГУ дан старт самому масштабному научно-популярному событию в мире - Всероссийскому фестивалю NAUKA 0+. В программе - свыше 10 000 мероприятий: лекции нобелевских лауреатов, вебинары и мастер-классы, виртуальные лабораторные, научные шоу, интерактивные выставки, телемосты с CERN, Международной космической станцией и российской антарктической станцией "Восток", дискуссии о будущем человечества, показы научных фильмов, соревнования роботов, научные бои Science Slam, квизы и квесты, а также первый Виртуальный гипермузей науки.

Нобелевскую премию по химии присудили за метод редактирования генома
РИА Новости: Нобелевскую премию по химии за 2020 год получили Эммануэль Шарпантье и Дженнифер Дудна, разработавшие технологию редактирования генома.

Нобелевская премия за графен, или 10 лет спустя
Алексей Арсенин
О том, как графен повлиял на развитие науки и промышленности и можно ли его назвать материалом будущего — заместитель директора Центра фотоники и двумерных материалов МФТИ, кандидат физико-математических наук Алексей Арсенин

Летние лектории для школьников
ФНМ
Сотрудники Факультета наук о материалах и химического факультета Московского государственного университета имени М.В.Ломоносова участвуют в лекториях двух летних школ, организованных Фондом Инфраструктурных и Образовательных Программ (группа РОСНАНО) - Нанограде и летней школе МФТИ.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.