Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Структура соединений в при различных количества атомов углерода © Yan-Ling Li et al. / Nature Communications
Предсказанные кристаллические структуры соединений Ca-C. © Yan-Ling Li et al. / Nature Communications

Пять новых карбидов кальция: уникальные восстановители и новые способы синтеза углеводородов

Ключевые слова:  Nature Communications, Исследования, Карбид кальция, Компьютерное моделирование, структура

Опубликовал(а):  Доронин Федор Александрович

28 июля 2015

Группа ученых под руководством Артема Оганова из МФТИ с помощью компьютерного моделирования «предсказала» пять абсолютно новых соединений углерода и кальция и получила два из них в эксперименте — новые материалы обладают крайне разнообразными химическими и физическими свойствами. Статья с результатами исследования опубликована в журнале Nature Communications. С карбидом кальция или просто «карбидом» сталкивались все, кто застал позднесоветскую эпоху: белые камушки, из которых получали ацетилен для газосварки и которые так эффектно шипели в лужах, были главным элементом дворовых химических экспериментов. Сегодня карбид кальция CaC2 используется по-прежнему: для промышленного производства ацетилена (хотя во дворах его уже не найдешь, для газосварки теперь используют готовый ацетилен в баллонах) и производства удобрений. Известен также более экзотический вариант соединения кальция и углерода — гексакарбид кальция CaCsub>6, который становится сверхпроводником при довольно высокой температуре — 11,5 кельвина. Теперь ученые обнаружили, что разнообразие соединений углерода и кальция не исчерпывается этими двумя веществами. С помощью компьютерного моделирования они выяснили, что при определенных условиях существуют еще как минимум пять других карбидов. Группа Оганова специализируется на поиске «невозможных» соединений, которые могут существовать вопреки известным химическим законами. С помощью созданного Огановым алгоритма моделирования химических соединений USPEX они предсказали существование «нестандартной» соли — соединений натрия и хлора, которые нарушали все химические законы: NaCl3, NaCl7, Na3Cl2, Na2Cl и Na3Cl, — а затем получили эти соединения в экспериментах. Они также открыли несколько нестандартных оксидов алюминия, оксидов магния и ряд других веществ.

Соединения кальция и углерода привлекли внимание Оганова и его коллег тем, что оба эти элемента показывают большое разнообразие структурных и электронных свойств при разных давлениях. В частности, кальций при давлении 216 гигапаскалей демонстрирует наивысшую температуру перехода в сверхпроводящее состояние для чистых элементов (29 кельвинов). Ученые с помощью компьютерного алгоритма USPEX проанализировали все возможные карбиды кальция, которые возникают при давлении от нормального до 100 гигапаскалей. Они обнаружили пять таких веществ: Ca5C2, Ca2C, Ca3C2, CaC и Ca2C3. Как показали расчеты, Ca2C3 остается стабильным при давлении ниже 28 гигапаскалей, Ca5C2 — выше 58 гигапаскалей, Ca2C — выше 14 гигапаскалей, Ca3C2 — с 50 гигапаскалей, CaC — с 26 гигапаскалей, а CaC2стабилен выше 21 гигапаскалей. Кристаллическая структура этих соединений содержит углеродные постройки, которые варьируются от «гантелей», до «лент» и «слоев», состоящих из шестигранников. Наиболее интересным соединением оказался Ca2C, который по своей структуре и свойствам является, как и графен, двумерным металлом. Графен — углеродный материал, за создание которого Андрею Гейму и Константину Новоселову была присуждена Нобелевская премия. Но, в отличие от графена, в Ca2C ток проходит по слоям атомов кальция, а не углерода, и в кальциевых слоях присутствуют сгустки «ничейных» электронов. Чтобы подтвердить теоретические предсказания, группа Оганова провела эксперимент по синтезу предсказанных веществ. Исследователи поместили смесь кальция и углерода в так называемую ячейку с алмазными наковальнями — камеру, в которой образец вещества сжимается между двумя алмазами. В такой камере давление может достигать сотен гигапаскалей. При давлении более 10 гигапскалей и температуре около 2000 кельвинов ученые зафиксировали образование Ca2C3, а при давлении более 22 гигапаскалей — образование Ca2C. Их теоретически предсказанная структура была подтверждена с помощью синхротронного излучения. «Эти необычные вещества могут найти себе практические применения, если удастся синтезировать их в достаточных количествах», — говорит Оганов. Так, например, двумерные карбиды, где есть «неприкаянные» электронные сгустки — уникальные восстановители — можно применить в химической промышленности, а карбиды, где есть группы из трех и более атомов углерода, — для синтеза необычных углеводородов, полагает ученый. Ссылка на статью. DOI:10.1038/ncomms7974


Источник: Импульс



Комментарии

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Природные фотонные кристаллы
Природные фотонные кристаллы

Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019
Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019. Тезисы доклада Быкова В.А.

Пять медалей завоевали российские школьники на Международной физической олимпиаде
Стали известны итоги 50-й Международной физической олимпиады для школьников, которая проходила в Тель-Авиве (Израиль). Российская сборная завоевала в состязаниях 4 золотые и одну серебряную медаль.

Поступление в совместный российско-китайский Университет МГУ-ППИ в Шэньчжэне
В июле 2019 года в МГУ имени М.В. Ломоносова проходит набор учащихся на программы МГУ, реализуемые в Университете МГУ-ППИ в Шэньчжэне. Поступление в совместный университет – это возможность учиться в самом быстроразвивающемся городе мира на русском языке у ведущих преподавателей МГУ по самым современным программам, получить образование мирового уровня и дипломы сразу двух университетов, овладев китайским языком. Для поступления в совместный университет не требуется владения китайским языком. Прием документов и экзамены проходят на территории МГУ. Абитуриенты имеют право поступать одновременно в МГУ имени М.В. Ломоносова и МГУ-ППИ в Шэньчжэне.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.