Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Физики построили первый в мире спектрометр на квантовых точках
(фото Mary O.Reilly).

На иллюстрации показано, как пять различных коллоидных растворов квантовых точек наносятся на существующую камеру

Разработан первый в мире компактный спектрометр на квантовых точках

Ключевые слова:  Квантовая механика, Квантовые технологии, Квантовые точки, МИТ, Спектрометр, Физика

Опубликовал(а):  Доронин Федор Александрович

11 июля 2015

Команда китайских физиков во главе с Джи Бао (Jie Bao) из Университета Цинхуа совместно с исследовательской группой из Массачусетского технологического института разработала первый в мире компактный спектрометр на квантовых точках. По словам создателей, лёгкое миниатюрное устройство, которое гораздо бюджетнее аналогов, может быть использовано даже в камерах смартфонов.

Также подобные спектрометры на квантовых точках могут найти широкое применение в фундаментальной науке, к примеру, для сбора исследовательских данных в рамках космических миссий. Или же устройства могут быть интегрированы в датчики обычной бытовой техники.

Спектрометрия, по сути, направлена на измерение интенсивности света в зависимости его от длины волны и используется для изучения различных свойств светоизлучающих и поглощающих свет веществ и материалов. Например, данная методика часто используется планетологами и астрономами для определения химического состава далёких планет и звёзд, где другие методы исследования попросту недоступны.

Большинство методов спектроскопии включают в себя рассеяние света в соответствии с его длиной волны. Так, к примеру, призмы могут быть использованы для того, чтобы разложить излучение на составляющие его длины волн (цвета), а полученный спектр может быть измерен при помощи чувствительных к свету детекторов.

Бао и его коллеги разработали инновационную методику спектрометрии, основанную на работе квантовых точек. Учёные создали массив полосно-пропускающих фильтров для света, через который проходит излучение, а затем попадает в позиционно-чувствительный детектор.

Квантовые точки представляют собой крошечные "капли" полупроводника диаметром в несколько нанометров. Также их иногда называют искусственными атомами, поскольку, как и обычные атомы, они поглощают и испускают свет лишь определённых длин волн. В отличие от атомов, однако, эти принимаемые и выдаваемые длины волн могут быть "настроены" путём простого регулирования размера квантовой точки.

Идея использовать массив квантовых точек для создания компактного спектрометра пришла в голову учёным после того, как они исследовали их применение в солнечных батареях и детекторах света.

"Я понял, что этот материал имеет уникальные свойства и что никакой другой материал не может с ним сравниться. Дело в том, что массив квантовых точек обладает крайне простым средством настройки оптического отклика", — рассказывает Бао в пресс-релизе MIT.

Физики сконструировали спектрометр на основе огромного массива квантовых точек 195 различных типов, который охватывает диапазон длин волн шириной в 300 нанометров. Изучая свет, который поглощали точки, учёные смогли определить относительную интенсивность различных длин волн в спектре падающего света.

Для создания массива учёные сделали коллоидную систему, поместив квантовые точки в раствор. Затем полученную смесь нанесли в качестве покрытия на отдельные пиксели цифровой камеры. Поскольку новая разработка совместима с уже существующими технологиями, утверждают разработчики, новый спектрометр может быть уже запущен в массовое производство, и стоимость его будет довольно низкой.

Новый спектрометр использует метод мультиплексирования который был впервые разработан для телекоммуникационной отрасли, чтобы позволить сразу нескольким сигналам передаваться по одному и тому же оптоволокну. Мультиплексирование уже используется для спектроскопии, но Бао утверждает, что предыдущие разработки не подходят для создания небольшого, недорогого и высокопроизводительного устройства.

"Именно коллоидные квантовые точки позволили совершить этот прорыв", — уверен Бао, чья статья вышла в журнале Nature.

Команда исследователей в данный момент занимается адаптацией своего детища под конкретные практические применения. Они уверены, что в скором времени их разработка превратит каждый смартфон в настоящий спектрометр, а стоимость космических миссий по изучению далёких планет и звёзд можно будет значительно сократить.


Источник: Вести.Наука




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Огни подводного города
Огни подводного города

Школа PI SCAMT: Стань руководителем глобальной лаборатории
Университет ИТМО приглашает принять участие в Школе PI. Школа PI - это возможность узнать как из точки А "молодой кандидат наук" дойти до точки Б "научный руководитель". За 1 неделю вы узнаете об этапах организации успешной исследовательской группы в России и разработаете дорожную карту построения своей собственной лаборатории. Школа PI подходит для кандидатов наук, защитивших диссертацию в области естественных наук не ранее 2015 года. Прием заявок до 1 мая 2021 г.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Новые титансодержащие комплексы для водородных
аккумуляторов. Зеленая электроника: мягкий актуатор из венериной мухоловки. Шелковичные черви создают новые нанокомпозиты in vivo. Конференции

В магистратуру МГУ - без экзаменов, юбилейная универсиада
Универсиада МГУ - уникальный конкурс, впервые проводимый в новом формате, который охватывает широкий диапазон участников – студентов и выпускников специалитета, бакалавриата, магистратуры, аспирантов, молодых ученых. Конкурс рассчитан на поддержку талантливой молодежи, мотивацию дальнейшего развития научно-исследовательской карьеры, пропаганду научных знаний, активное вовлечение участников в обмен мнениями и равноправное соревнование со своими сверстниками и коллегами на международном уровне, а также поступление в бесплатную магистратуру МГУ без экзаменов по результатам Универсиады.

Спинтроника и iPod
В.В.Уточникова
В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.

ДНК правит компьютером
Бидыло Тимофей Иванович
Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.