Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Метод "Киригами" как основа гибкой электроники на основе УНТ

Ключевые слова:  Nature Materials, Гибкая электроника, Нанотрубки, Углеродные нанотрубки, УНТ

Опубликовал(а):  Доронин Федор Александрович

05 июля 2015

Японское искусство киригами, заключающееся в фигурной резке бумаги и изготовлении из неё необычных фигурок, вдохновило исследователей из Мичиганского университета на создание гибкой и растяжимой электроники на основе углеродных нанотрубок. Растяжение нового материала можно увеличить с 4 до 370% без существенного влияния на проводимость.

В поисках способов создания гибких, растяжимых и при этом функциональных проводников американские исследователи обратились к японскому искусству киригами. Напомним, что не так давно писали о том, что это искусство легло в основу инновационных растягивающихся аккумуляторов. Обычно сжатие нарушает электропроводящие свойства устройства, однако при растяжении проводники снова начинают действовать в полную силу.

"Метод киригами подсказал нам, как проектировать деформируемые проводящие листы. Раньше этот процесс был почти недоступен и устройства получались не очень эффективными, – рассказывает один из авторов исследования Николас Котов (Nicholas Kotov). – Когда материалы растягиваются по максимуму, сложно заранее предсказать, когда и где произойдёт разрыв. Однако наш новый подход позволяет материалу растягиваться и восстанавливаться, оставаясь по-прежнему работоспособным".

Новая концепция, на первый взгляд, кажется достаточно простой, однако инженеры только сейчас пришли к такому решению проблемы. Первый прототип проводника-киригами был создан с помощью бумаги, покрытой углеродными нанотрубками. Конструкция была предельно простой и внешне напоминала кухонную тёрку.

Далее команда соорудила другой прототип в стеклянной колбе, заполненной газом аргоном. Напряжение на электродах генерировало электрическое поле, которое заставляло аргон ионизироваться и излучать свет. В этом случае растяжение в 200% никак не влияло на процесс.

(Котов объясняет, что по тому же принципу в будущем будут контролироваться пиксели растяжимого плазменного дисплея.)

Инженеры пытались понять, как именно разрезы в разных местах пласта материала влияют на способность проводника к растяжению без потерь функциональности. Для этого учёным пришлось обратиться к компьютерному моделированию. Оно помогло учёным узнать, чего можно ожидать от гибких элементов различных форм. Затем, также с помощью моделирования, исследователи изучили влияние различных переменных на растяжимость материала (в частности, длины и кривизны разрезов и расстояния между ними).

Для получения микроскопического проводника-киригами доцент в области материаловедения и инженерии Терри Шью (Terry Shyu) изготовила специальную "бумагу" из оксида графена — материала, состоящего из углерода и кислорода толщиной в один атом. Она проложила его гибким пластиком, создав около трёх десятков слоёв. Самым сложным в процессе, по её словам, было нанесение крошечных разрезов, длина которых была около нескольких десятых миллиметра.

Для этого высокотехнологичную "бумагу" покрыли материалом, удалить который можно с помощью лазерного света. Затем Шью "вытравила" лазером на покрытии необходимый рисунок, а потом при помощи потока ионов кислорода и электронов создала нужные разрезы по маске покрытия.

В итоге получился материал, который повёл себя согласно прогнозам моделей. Он растягивался без дополнительных потерь в проводимости.

Возможно, в недалёком будущем люди, благодаря этой технологии, смогут погнуть свой смартфон, и это будет считаться достоинством техники, а не его дефектом.

Подробности исследования были опубликованы в издании Nature Materials.


Источник: Вести.Наука




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Транзистор на многостенной УНТ
Транзистор на многостенной УНТ

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.